Epi-LASIK with the Epi-K epikeratome effectively cleaved the epithelium from Bowman's layer in healthy corneas; however, when the integrity of Bowman's layer is compromised, epi-LASIK should be avoided as stromal invasion will likely occur.
The concern for the reduction of the environmental impact caused by greenhouse emissions (CO2) from fossil fuel combustion processes is growing around the world. This has increased research on new energy technologies to produce clean fuels. One of them is the use of biomass as feedstock in gasification processes. The rice agriculture industry around the world produces a great amount of rice husk wastes (RHW) which show the potential for water, soil, and air pollution (including global warming by way of potent greenhouse emissions such as CH4) since waste handling system and structures for storage and treatment frequently are not appropriate. However, the concentration of the rice husk in industrial units makes this low Btu feedstock a viable source for locally based thermal gasification. The current paper presents results on both HRW adiabatic gasification modeling using air-steam blends for partial oxidation and pyrolysis kinetic model to determine, by thermogravimetric analysis (TGA), the RHW activation energy (E). The Chemical Equilibrium with Applications program (CEA), developed by NASA, was used to estimate the effect of both the equivalence ratio (ER) and the steam to fuel ratio (S:F) on adiabatic temperature, gas quality (gas composition and energy density), and energy recovery of an unlimited number of species (∼150). The thermogravimetric analysis (TGA) was carried out using N2 as carrier gas and under different heating rates (β: 10, 20, 40, and 50 °C/min). Furthermore, the activation energy (E) was estimated based in the results from TGA and using the isoconversional method (i.e., free-model). In general, for the range of parameters studied (0.2 < S:F < 0.8 and 1.5 < Φ < 6), the results from equilibrium adiabatic modeling (CEA) showed that increased ER and (S:F) ratios increase the production of H2 and CO2 but decrease the production of CO. Equilibrium temperature decreases with increased ER until ER = 3.0 whereas at ER > 3.0, the effect of ER on equilibrium temperature is negligible. Also, the activation energy average value, estimated from the kinetics model, results to be 233 kJ/kmol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.