Photosynthesis and carbon fixation depend critically on the regulation of pH in chloroplast compartments in the daylight and at night. While it is established that an alkaline stroma is required for carbon fixation, it is not known how alkaline stromal pH is formed, maintained or regulated. We tested whether two envelope transporters, AtKEA1 and AtKEA2, directly affected stromal pH in isolated Arabidopsis chloroplasts using the fluorescent probe 2ʹ,7ʹ-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). External K +-induced alkalinization of the stroma was observed in chloroplasts from wildtype (WT) plants but not from kea1kea2 mutants, suggesting that KEA1 and KEA2 mediate K + uptake/H + loss to modulate stromal pH. While light-stimulated alkalinization of the stroma was independent of KEA1 and KEA2, the rate of decay to neutral pH in the dark is delayed in kea1kea2 mutants. However, the dark-induced loss of a pH gradient across the thylakoid membrane was similar in WT and mutant chloroplasts. This indicates that proton influx from the cytosol mediated by envelope K + /H + antiporters contributes to adjustment of stromal pH upon light to dark transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.