Nanometer-scale proteinaceous pores are the basis of ion and macromolecular transport in cells and organelles. Recent studies suggest that ion channels and synthetic nanopores may prove useful in biotechnological applications. To better understand the structure-function relationship of nanopores, we are studying the ion-conducting properties of channels formed by wild-type and genetically engineered versions of Staphylococcus aureus alpha-hemolysin (alphaHL) reconstituted into planar lipid bilayer membranes. Specifically, we measured the ion selectivities and current-voltage relationships of channels formed with 24 different alphaHL point cysteine mutants before and after derivatizing the cysteines with positively and negatively charged sulfhydryl-specific reagents. Novel negative charges convert the selectivity of the channel from weakly anionic to strongly cationic, and new positive charges increase the anionic selectivity. However, the extent of these changes depends on the channel radius at the position of the novel charge (predominantly affects ion selectivity) or on the location of these charges along the longitudinal axis of the channel (mainly alters the conductance-voltage curve). The results suggest that the net charge of the pore wall is responsible for cation-anion selectivity of the alphaHL channel and that the charge at the pore entrances is the main factor that determines the shape of the conductance-voltage curves.
This paper compares the functional properties of ion channels formed in planar lipid membranes by the wild and mutant Staphylococcus aureus alpha-toxin. It was shown that replacement of the amino acid Gly at position 130 by Cys in the primary structure of the toxin decreases the single-channel conductance with a concomitant decrease in the pH at which the channel becomes unable to discriminate between Cl- and K+ ions. The mutation also induced an increase in the asymmetry in the current-voltage relationship of the channel. The results of our experiments suggest that the trans-mouth of the channel is responsible for all the observed changes in channel properties. It was assumed that this entrance is built by the glycine-rich hinge portion of the toxin and is situated close to the surface of monolayer facing the trans-compartment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.