Quantile regression provides a detailed and robust picture of the distribution of a response variable, conditional on a set of observed covariates. Recently, it has be been extended to the analysis of longitudinal continuous outcomes using either time-constant or time-varying random parameters.However, in real-life data, we frequently observe both temporal shocks in the overall trend and individual-specific heterogeneity in model parameters. A benchmark dataset on HIV progression gives a clear example. Here, the evolution of the CD4 log counts exhibits both sudden temporal changes in the overall trend and heterogeneity in the effect of the time since seroconversion on the response dynamics. To accommodate such situations, we propose a quantile regression model where time-varying and time-constant random coefficients are jointly considered. Since observed data may be incomplete due to early drop-out, we also extend the proposed model in a pattern mixture perspective. We assess the performance of the proposals via a large scale simulation study and the analysis of the CD4 count data.
Motivated by the analysis of data from the UK Millennium Cohort Study on emotional and behavioural disorders, we develop an M‐quantile regression model for multivariate longitudinal responses. M‐quantile regression is an appealing alternative to standard regression models; it combines features of quantile and expectile regression and it may produce a detailed picture of the conditional response variable distribution, while ensuring robustness to outlying data. As we deal with multivariate data, we need to specify what it is meant by M‐quantile in this context, and how the structure of dependence between univariate profiles may be accounted for. Here, we consider univariate (conditional) M‐quantile regression models with outcome‐specific random effects for each outcome. Dependence between outcomes is introduced by assuming that the random effects in the univariate models are dependent. The multivariate distribution of the random effects is left unspecified and estimated from the observed data. Adopting this approach, we are able to model dependence both within and between outcomes. We further discuss a suitable model parameterisation to account for potential endogeneity of the observed covariates. An extended EM algorithm is defined to derive estimates under a maximum likelihood approach.
The Italian National Institute for Statistics regularly provides estimates of unemployment indicators using data from the Labor Force Survey. However, direct estimates of unemployment incidence cannot be released for Local Labor Market Areas. These are unplanned domains defined as clusters of municipalities; many are out-ofsample areas and the majority is characterized by a small sample size, which render direct estimates inadequate. The Empirical Best Predictor represents an appropriate, model-based, alternative. However, for non-Gaussian responses, its computation and the computation of the analytic approximation to its Mean Squared Error require the solution of (possibly) multiple integrals that, generally, have not a closed form. To solve the issue, Monte Carlo methods and parametric bootstrap are common choices, even though the computational burden is a non trivial task. In this paper, we propose a Semi-Parametric Empirical Best Predictor for a (possibly) non-linear mixed effect model by leaving the distribution of the area-specific random effects unspecified and estimating it from the observed data. This approach is known to lead to a discrete mixing distribution which helps avoid unverifiable parametric assumptions and heavy integral approximations. We also derive a second-order, bias-corrected, analytic approximation to the corresponding Mean Squared Error. Finite sample properties of the proposed approach are tested via a large scale simulation study. Furthermore, the proposal is applied to unit-level data from the 2012 Italian Labor Force Survey to estimate unemployment incidence for 611 Local Labor Market Areas using auxiliary information from administrative registers and the 2011 Census.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.