In this work, chitosan films were prepared by a casting/solvent evaporation methodology using pectin or hydroxypropylmethyl cellulose to form polymeric matrices. Miconazole nitrate, as a model drug, was loaded into such formulations. These polymeric films were characterized in terms of mechanical properties, adhesiveness, and swelling as well as drug release. Besides, the morphology of raw materials and films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity studied by differential scanning calorimetry and X-ray diffraction. In addition, antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. Chitosan:hydroxypropylmethyl cellulose films were found to be the most appropriate formulations in terms of folding endurance, mechanical properties, and adhesiveness. Also, an improvement in the dissolution rate of miconazole nitrate from the films up to 90% compared to the non-loaded drug was observed. The in vitro antifungal activity showed a significant activity of the model drug when it is loaded into chitosan films. These findings suggest that chitosan-based films are a promising approach to deliver miconazole nitrate for the treatment of candidiasis.
The aim of the current study was to design oral fast-release polymeric tablets of prednisone and to optimize the drug dissolution profile by modifying the carrier concentration. Solid dispersions were prepared by the solvent evaporation method at different drug:polymer ratios (wt/wt). The physical state and drug:carrier interactions were analyzed by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. The dissolution rate of prednisone from solid dispersions was markedly enhanced by increasing the polymer concentration. The tablets were prepared from solid dispersion systems using polyethylene glycol (PEG) 6000 as a carrier at low and high concentration. The results showed that PEG 6000-based tablets exhibited a significantly higher prednisone dissolution (80% within 30 minutes) than did conventional tablets prepared without PEG 6000 (<25% within 30 minutes). In addition, the good disintegration and very good dissolution performance of the developed tablets without the addition of superdisintegrant highlighted the suitability of these formulated dosage forms. The stability studies performed in normal and accelerated conditions during 12 months showed that prednisone exhibited high stability in PEG 6000 solid dispersion powders and tablets. The X-ray diffraction showed that the degree of crystallinity of prednisone in solid dispersions decreased when the ratio of the polymer increased, suggesting that the drug is present inside the samples in different physical states. The Fourier transform infrared spectroscopic studies showed the stability of prednisone and the absence of well-defined drug:polymer interactions. Scanning electron microscopy images showed a novel morphology of the dispersed systems in comparison with the pure components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.