In city farming, when growing green crops, a significant part of the production cost is the cost of electricity for lighting. The physiology, biochemistry, morphology and productivity of plants can be affected by changing irradiation modes and these changes reduce electricity costs. However, the results of studies in the literature are contradictory. In this work, we investigated the effect of impulse (frequency 1000 Hz and duty cycle 67%), scanning (the principle of running lights) and constant 16 h and 24 h modes of operation of white light LED irradiators on the physiological, biochemical and morphometric parameters of lettuce with red and green leaves. The daytime integral of light in all variants remained unchanged ~15.6 mol m−2 day−1. Daily electricity consumption also did not differ significantly. Plants were grown on racks in a climatic chamber up to 35 days of age. For lettuce with red leaves, the most optimal for biomass accumulation and synthesis of anthocyanins was the impulse illumination mode, while for lettuce with green leaves, no statistically significant differences in biomass were observed under different irradiation modes. For red-leaved lettuce, it was found that the highest concentration of carotenoids in the leaf was observed under constant (24 h) and scanning irradiation, which is associated with a more active reaction of the photosynthetic system to prolonged irradiation and increased intensity during scanning irradiation. Also, increased photosynthetic activity was found in both varieties of lettuce at 16 h of operation of LED irradiators, which, however, did not affect their final productivity. The results may be useful for the development of LED illuminators for use in rack growing.
The roller and sieve machines most commonly used in Russia for the post-harvest processing of root and tuber crops and onions have a number of disadvantages, the main one being a decrease in the quality of sorting due to the contamination of working bodies, which increases the quantity of losses during sorting and storage. To obtain high-quality competitive production, it is necessary to combine a number of technological operations during the sorting process, such as dividing the material into classes and fractions by quality and size, as well as identifying and removing damaged products. In order to improve the quality of sorting of root tubers and onions by size, it is necessary to ensure the development of an automatic control system for operating and technological parameters, the use of which will eliminate manual sorting on bulkhead tables in post-harvest processing. To fulfill these conditions, the developed automatic control system must have the ability to identify the material on the sorting surface, taking into account external damage and ensuring the automatic removal of impurities. In this study, the highest sorting accuracy of tubers (of more than 91%) was achieved with a forward speed of 1.2 m/s for the conveyor of the sorting table, with damage to 2.2% of the tubers, which meets the agrotechnical requirements for post-harvest processing. This feature distinguishes the developed device from similar ones.
Identification of specific mycotoxins p. Fusarium contained in infected winter wheat seeds can be achieved by visually recognizing their distinctive phenotypic species. The visual identification (ID) of species is subjective and usually requires significant taxonomic knowledge. Methods for the determination of various types of mycotoxins of the p. Fusarium are laborious and require the use of chemical invasive research methods. In this research, we investigate the possibility of using Raman spectroscopy (RS) as a tag-free, non-invasive and non-destructive analytical method for the rapid and accurate identification of p. Fusarium. Varieties of the r. Fusarium can produce mycotoxins that directly affect the DNA, RNA and chemical structure of infected seeds. Analysis of spectra by RS methods and chemometric analysis allows the identification of healthy, infected and contaminated seeds of winter wheat with varieties of mycotoxins p. Fusarium. Raman seed analysis provides accurate identification of p. Fusarium in 96% of samples. In addition, we present data on the identification of carbohydrates, proteins, fiber and other nutrients contaminated with p. Fusarium seeds obtained using spectroscopic signatures. These results demonstrate that RS enables rapid, accurate and non-invasive screening of seed phytosanitary status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.