BackgroundA smoke-free law came into effect in Spain on 1st January 2006, affecting all enclosed workplaces except hospitality venues, whose proprietors can choose among totally a smoke-free policy, a partial restriction with designated smoking areas, or no restriction on smoking on the premises. We aimed to evaluate the impact of the law among hospitality workers by assessing second-hand smoke (SHS) exposure and the frequency of respiratory symptoms before and one year after the ban.Methods and FindingWe formed a baseline cohort of 431 hospitality workers in Spain and 45 workers in Portugal and Andorra. Of them, 318 (66.8%) were successfully followed up 12 months after the ban, and 137 nonsmokers were included in this analysis. We obtained self-reported exposure to SHS and the presence of respiratory symptoms, and collected saliva samples for cotinine measurement. Salivary cotinine decreased by 55.6% after the ban among nonsmoker workers in venues where smoking was totally prohibited (from median of 1.6 ng/ml before to 0.5 ng/ml, p<0.01). Cotinine concentration decreased by 27.6% (p = 0.068) among workers in venues with designated smoking areas, and by 10.7% (p = 0.475) among workers in venues where smoking was allowed. In Portugal and Andorra, no differences between cotinine concentration were found before (1.2 ng/ml) and after the ban (1.2 ng/ml). In Spain, reported respiratory symptom declined significantly (by 71.9%; p<0.05) among workers in venues that became smoke-free. After adjustment for potential confounders, salivary cotinine and respiratory symptoms decreased significantly among workers in Spanish hospitality venues where smoking was totally banned.ConclusionsAmong nonsmoker hospitality workers in bars and restaurants where smoking was allowed, exposure to SHS after the ban remained similar to pre-law levels. The partial restrictions on smoking in Spanish hospitality venues do not sufficiently protect hospitality workers against SHS or its consequences for respiratory health.
Background: Exposure to environmental tobacco smoke (ETS) has important public health implications. The results of the first European multi-centre study that measured ETS exposure in a range of public places (transport, educational settings, and leisure facilities such as bars and restaurants) are presented. Method: Nicotine vapour phase was measured using ETS passive samplers containing a filter treated with sodium bisulfate. Results: Bars and discos are the places with the highest concentrations of nicotine from ETS, median ranging from 19 to 122 mg/m 3 . Restaurants had the next highest values. Concentrations of nicotine generally range from 0.1-5 mg/m 3 in airports, and from 0.5-10 mg/m 3 in train stations. Nicotine was also found in schools and universities, yet schools tended to have the lowest concentrations compared to all the other public places sampled. In hospitals levels were generally below 5 mg/m 3 . Conclusions: Although there is some variability between cities, this study shows that tobacco smoke is present in most of the studied public places. The study also showed that in areas where smoking is prohibited, concentrations of nicotine are lower than in areas where smoking is allowed but they are not zero. The results of this study indicate that policies should be implemented that would effectively reduce levels of tobacco smoke in public areas.
Background: Some countries have recently extended smoke-free policies to particular outdoor settings; however, there is controversy regarding whether this is scientifically and ethically justifiable.Objectives: The objective of the present study was to review research on secondhand smoke (SHS) exposure in outdoor settings.Data sources: We conducted different searches in PubMed for the period prior to September 2012. We checked the references of the identified papers, and conducted a similar search in Google Scholar.Study selection: Our search terms included combinations of “secondhand smoke,” “environmental tobacco smoke,” “passive smoking” OR “tobacco smoke pollution” AND “outdoors” AND “PM” (particulate matter), “PM2.5” (PM with diameter ≤ 2.5 µm), “respirable suspended particles,” “particulate matter,” “nicotine,” “CO” (carbon monoxide), “cotinine,” “marker,” “biomarker” OR “airborne marker.” In total, 18 articles and reports met the inclusion criteria.Results: Almost all studies used PM2.5 concentration as an SHS marker. Mean PM2.5 concentrations reported for outdoor smoking areas when smokers were present ranged from 8.32 to 124 µg/m3 at hospitality venues, and 4.60 to 17.80 µg/m3 at other locations. Mean PM2.5 concentrations in smoke-free indoor settings near outdoor smoking areas ranged from 4 to 120.51 µg/m3. SHS levels increased when smokers were present, and outdoor and indoor SHS levels were related. Most studies reported a positive association between SHS measures and smoker density, enclosure of outdoor locations, wind conditions, and proximity to smokers.Conclusions: The available evidence indicates high SHS levels at some outdoor smoking areas and at adjacent smoke-free indoor areas. Further research and standardization of methodology is needed to determine whether smoke-free legislation should be extended to outdoor settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.