In this work, we approach the problem of extracting a dynamic multiport thermal compact model from thermal impedance transients of microsystems using genetic algorithms. The model takes the form of a unique RC network, using a thermal-electrical analogy. The model topology is codified in a binary chromosoma and nonlinear least squares is used for sizing their components. The compact model topology evolution is genetically controlled to obtain the RC network that minimizes the reconstruction error of the thermal impedance transients. As an example, the proposed methodology is applied to an innovative silicon microthruster and compared with random search and sequential forward selection.
Antibodies are key molecules for the immune system of vertebrates. The Y-shaped IgGs exhibit C2-symmetry; their Fc stem is connected to two identical Fab arms binding antigens. The Fc part is recognized by the complement
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.