Fractals are models of natural processes with many applications in medicine. The recent studies in medicine show that fractals can be applied for cancer detection and the description of pathological architecture of tumors. This fact is not surprising, as due to the irregular structure, cancerous cells can be interpreted as fractals. Inspired by Sierpinski carpet, we introduce a flexible parametric model of random carpets. Randomization is introduced by usage of binomial random variables. We provide an algorithm for estimation of parameters of the model and illustrate theoretical and practical issues in generation of Sierpinski gaskets and Hausdorff measure calculations. Stochastic geometry models can also serve as models for binary cancer images. Recently, a Boolean model was applied on the 200 images of mammary cancer tissue and 200 images of mastopathic tissue. Here, we describe the Quermass-interaction process, which can handle much more variations in the cancer data, and we apply it to the images. It was found out that mastopathic tissue deviates significantly stronger from Quermass-interaction process, which describes interactions among particles, than mammary cancer tissue does. The Quermass-interaction process serves as a model describing the tissue, which structure is broken to a certain level. However, random fractal model fits well for mastopathic tissue. We provide a novel discrimination method between mastopathic and mammary cancer tissue on the basis of complex wavelet-based self-similarity measure with classification rates more than 80%. Such similarity measure relates to Hurst exponent and fractional Brownian motions. The R package FractalParameterEstimation is developed and introduced in the paper.
In this contribution we study social network modelling by using human interaction as a basis. To do so, we propose a new set of functions, affinities, designed to capture the nature of the local interactions among each pair of actors in a network. By using these functions, we develop a new community detection algorithm, the Borgia Clustering, where communities naturally arise from the multi-agent interaction in the network. We also discuss the effects of size and scale for communities regarding this case, as well as how we cope with the additional complexity present when big communities arise. Finally, we compare our community detection solution with other representative algorithms, finding favourable results.
The tasks involving repeated integral occur from time to time in technical practice. This paper introduces the research of authors in the field of repeated integrals within the required class of functions. Authors focus on the definite integral over repeated integral and they develop a tool for its computation. It involves two principal steps, analytical and numerical step.
In the analytical step, the definite integral over a repeated integral is decomposed into n integrals and then the Cauchy form is used for further rearrangement. Numerical step involves Gauss type integration slightly modified by the authors. Several examples illustrating the operation of both analytical and numerical steps of the method are provided in the paper.
In this study, we discuss a new class of fuzzy subsethood measures between fuzzy sets. We propose a new definition of fuzzy subsethood measure as an intersection of other axiomatizations and provide two construction methods to obtain them. The advantage of this new approach is that we can construct fuzzy subsethood measures by aggregating fuzzy implication operators which may satisfy some properties widely studied in literature. We also obtain some of the classical measures such as the one defined by Goguen. The relationships with fuzzy distances, penalty functions, and similarity measures are also investigated. Finally, we provide an illustrative example which makes use of a fuzzy entropy defined by means of our fuzzy subsethood measures for choosing the best fuzzy technique for a specific problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.