Context Olympic athletes represent model of success in our society, by enduring strenuous conditioning programmes and achieving astonishing performances. They also raise scientific and clinical interest, with regard to medical care and prevalence of cardiovascular (CV) abnormalities. Objective Our aim was to assess the prevalence and type of CV abnormalities in this selected athlete's cohort. Design, setting and participants 2352 Olympic athletes, mean age 25±6, 64% men, competing in 31 summer or 15 winter sports, were examined with history, physical examination, 12-lead and exercise ECG and echocardiography. Additional testing (cardiac MRI, CT scan) or electrophysiological assessments were selectively performed when indicated. Main outcome measures Prevalence and type of CV findings, abnormalities and diseases found in Olympic athletes over 10 years. Results A subset of 92 athletes (3.9%) showed abnormal CV findings. Structural abnormalities included inherited cardiomyopathies (n=4), coronary artery disease (n=1), perimyocarditis (n=4), myocardial bridges (n=2), valvular and congenital diseases (n=45) and systemic hypertension (n=10). Primary electrical diseases included atrial fibrillation (n=2), supraventricular reciprocating tachycardia (n=14), complex ventricular tachyarrhythmias (non-sustained ventricular tachycardia, n=7; bidirectional ventricular tachycardia, n=1) or major conduction disorders (Wolff-Parkinson-White (WPW), n=1; Long QT syndrome (LQTS), n=2). Conclusions Our study revealed an unexpected prevalence of CV abnormalities among Olympic athletes, including a small, but not negligible proportion of pathological conditions at risk. This observation suggests that Olympic athletes, despite the absence of symptoms or astonishing performances, are not immune from CV disorders and might be exposed to unforeseen high-risk during sport activity.
PA present an unexpected high prevalence of CV abnormalities (12%), including a non-trivial proportion of diseases at risk for sudden death (2%), such as arrhythmogenic cardiomyopathies and dilated aortic root. This observation suggests that tailored recommendations for preparticipation screening and safe SP in this special athletic population are timely and appropriate.
IMPORTANCE Paralympic medicine is a newly adopted term to describe the varied health care issues associated with athletes in the Paralympics. Scarce scientific data, however, are currently available describing the cardiac remodeling in Paralympic athletes. OBJECTIVE To investigate the physiological and clinical characteristics of the Paralympic athlete's heart and derive the normative values. DESIGN, SETTING, AND PARTICIPANTS This is a single-center study on a relatively large cohort of Paralympic athletes, conducted at the Italian Institute of Sport Medicine and Science. Paralympic athletes free of cardiac or systemic pathologic conditions other than their cause of disability were selected for participation in the Paralympic Games from January 2000 to June 2014. Athletes were arbitrarily classified for disability in 2 groups: those with spinal cord injuries (SCI) and those with non-SCI (NSCI). Data analysis occurred from March 2019 to June 2020. MAIN OUTCOMES AND MEASURES The primary outcome was the difference in cardiac remodeling in Paralympic athletes according to disability type and sports discipline type. Athletes underwent cardiac evaluation, including 12-lead and exercise electrocardiograms, echocardiography, and cardiopulmonary exercise testing. RESULTS Among 252 consecutive Paralympic athletes (median [interquartile range (IQR)] age, 34 [29-41] years; 188 men [74.6%]), 110 had SCI and 142 had NSCI. Those with SCI showed a higher prevalence of abnormal electrocardiogram findings than those with NSCI (13 of 110 [11.8%] vs 6 of 142 [4.2%]; P = .003), smaller left ventricular end-diastolic dimension (median [IQR], 48 [46-52] vs 51 [48-54] mm; P = .001) and left ventricular mass index (median [IQR], 80.6 [69-94] vs 91.3 [80-108] g/m 2 ; P = .001), and lower peak oxygen uptake (VO 2 ) (median [IQR], 27.1 [2-34] vs 38.5 [30-47] mL/min/kg; P = .001) in comparison with those with NSCI.Regarding sport discipline, endurance athletes had a larger left ventricular cavity (median [IQR], 52 [47-54] vs 49 [47-53] mm; P = .006) and higher peak VO 2 (median [IQR],[46][47][48][49][50][51][52][53][54][55] mL/min/kg; P = .001) than athletes in nonendurance sports.CONCLUSIONS AND RELEVANCE Cardiac remodeling in Paralympic athletes differed by disability and sport discipline. Having NSCI lesions and engaging in endurance sports were associated with the largest left ventricular cavity and left ventricular mass and highest VO 2 peak. Having SCI lesions and engaging in nonendurance disciplines, on the contrary, were associated with the smallest left ventricular cavity and mass and lowest VO 2 peak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.