The demand for humanitarian supply chains grows daily as the incidence of calamities rises. Typhoons cause thousands of casualties each year. As a result, policymakers and governmental authorities must develop effective readiness and response measures as part of pre-disaster plans. This paper proposed a stochastic model for multi-objective location-routing for creating a humanitarian network for pre-disaster response. The model aims to minimize the overall costs of the network’s setup, the time required to travel through it, and the number of vehicles necessary for transferring affected individuals to evacuation centers. The model concentrates on pre-disaster scenarios in uncertainty. The provided model was implemented in an actual scenario in one of the Philippines’ provinces and solved using Multi-Objective Particle Swarm Optimization (MOPSO), which is also contrasted with Multi-Objective Simulated Annealing (MOSA) and the ε-constraint approach. According to empirical findings, the model can be used to identify distribution hubs and evacuation centers and choose the best routes in unexpected and actual disaster scenarios. Given that the ideal number, location, and capacity of DCs and ECs are known in advance, government decision-makers can solve any potential shortages and problems during the disaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.