Resolving how the early signaling events initiated by cell-cell interactions are transduced into diverse functional outcomes necessitates correlated measurements at various stages. Typical approaches that rely on bulk cocultures and population-wide correlations, however, only reveal these relationships broadly at the population level, not within each individual cell. Here, we present a microfluidics-based cell-cell interaction assay that enables longitudinal investigation of lymphocyte interactions at the single-cell level through microfluidic cell pairing, on-chip culture, and multiparameter assays, and allows recovery of desired cell pairs by micromanipulation for off-chip culture and analyses. Well-defined initiation of interactions enables probing cellular responses from the very onset, permitting singlecell correlation analyses between early signaling dynamics and later-stage functional outcomes within same cells. We demonstrate the utility of this microfluidic assay with natural killer cells interacting with tumor cells, and our findings suggest a possible role for the strength of early calcium signaling in selective coordination of subsequent cytotoxicity and IFN-gamma production. Collectively, our experiments demonstrate that this new approach is well-suited for resolving the relationships between complex immune responses within each individual cell.microfluidics | cell pairing | single-cell analysis | cell-cell interactions | multiparameter assay I nitiation and progression of immune responses require direct cell-cell interactions. Molecular interactions at the contact interface mediate cellular cross-talk and trigger a series of wellorchestrated downstream signaling events. The magnitude and dynamics of these signals promote and coordinate immune cell activation, and underlie a broad array of functional outcomes, such as target cell elimination, secretory activity, and proliferation (1, 2). Understanding how these early signaling events are transduced into functional responses demands correlated measurements at different stages as these responses unfold.Typically, these relationships are probed by first activating cells in bulk cocultures, often mixing cell populations and initiating contacts via a brief centrifugal cosedimentation, and then piecing together measurements from independent assays performed at different time points. This approach may determine broad outcomes of intercellular interactions, but it suffers from three major limitations. First, individual assay measurements are averaged over many different combinations of interactions due to the uncontrolled and indefinite nature of cell-cell interactions in bulk cocultures. For example, varying times of initiation and duration of contacts (1, 3), number of interacting partners (4), and differences in antigen presenting cells (5) can all modulate immune cell responses. Unpredictable variation is therefore introduced into measured responses, masking the true intrinsic cellular heterogeneity and blurring the correlations. Second, conventional as...
Cytokine-based therapies for cancer have not achieved widespread clinical success because of inherent toxicities. Treatment for pancreatic cancer is limited by the dense stroma that surrounds tumors and by an immunosuppressive tumor microenvironment. To overcome these barriers, we developed constructs of single-domain antibodies (VHHs) against PD-L1 fused with IL-2 and IFNγ. Targeting cytokine delivery in this manner reduced pancreatic tumor burden by 50%, whereas cytokines fused to an irrelevant VHH, or blockade of PD-L1 alone, showed little effect. Targeted delivery of IL-2 increased the number of intratumoral CD8 T cells, whereas IFNγ reduced the number of CD11b cells and skewed intratumoral macrophages toward the display of M1-like characteristics. Imaging of fluorescent VHH-IFNγ constructs, as well as transcriptional profiling, demonstrated targeting of IFNγ to the tumor microenvironment. Many tumors and tumor-infiltrating myeloid cells express PD-L1, rendering them potentially susceptible to this form of targeted immunotherapy. .
The CrbS/R two-component signal transduction system is a conserved regulatory mechanism through which specific Gram-negative bacteria control acetate flux into primary metabolic pathways. CrbS/R governs expression of acetyl-CoA synthase (acsA), an enzyme that converts acetate to acetyl-CoA, a metabolite at the nexus of the cell’s most important energy-harvesting and biosynthetic reactions. During infection, bacteria can utilize this system to hijack host acetate metabolism and alter the course of colonization and pathogenesis. In toxigenic strains of Vibrio cholerae, CrbS/R-dependent expression of acsA is required for virulence in an arthropod model. Here, we investigate the function of the CrbS/R system in Pseudomonas aeruginosa, Pseudomonas entomophila, and non-toxigenic V. cholerae strains. We demonstrate that its role in acetate metabolism is conserved; this system regulates expression of the acsA gene and is required for growth on acetate as a sole carbon source. As a first step towards describing the mechanism of signaling through this pathway, we identify residues and domains that may be critical for phosphotransfer. We further demonstrate that although CrbS, the putative hybrid sensor kinase, carries both a histidine kinase domain and a receiver domain, the latter is not required for acsA transcription. In order to determine whether our findings are relevant to pathogenesis, we tested our strains in a Drosophila model of oral infection previously employed for the study of acetate-dependent virulence by V. cholerae. We show that non-toxigenic V. cholerae strains lacking CrbS or CrbR are significantly less virulent than are wild-type strains, while P. aeruginosa and P. entomophila lacking CrbS or CrbR are fully pathogenic. Together, the data suggest that the CrbS/R system plays a central role in acetate metabolism in V. cholerae, P. aeruginosa, and P. entomophila. However, each microbe’s unique environmental adaptations and pathogenesis strategies may dictate conditions under which CrbS/R-mediated acs expression is most critical.
iNKT cell functional subsets are defined by key transcription factors and output of cytokines such as IL-4, IFNγ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice, cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα, paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, as well as cytokine profiles and found that although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.
T-cell priming occurs when a naïve T cell recognizes cognate peptide-MHC complexes on an activated antigen presenting cell. The circumstances of this initial priming have ramifications on the fate of the newly primed T cell. Newly primed CD8+ T cells can embark onto different trajectories, with some becoming short-lived effector cells and others adopting a tissue resident or memory cell fate. To determine whether T-cell priming influences the quality of the effector T-cell response to tumors, we used transnuclear CD8+ T cells that recognize the melanoma antigen TRP1 using TRP1high or TRP1low TCRs that differ in both affinity and fine specificity. From a series of altered peptide ligands, we identified a point mutation (K8) in a non-anchor residue that, when analyzed crystallographically and biophysically, destabilized the peptide interaction with the MHC binding groove. In vitro, the K8 peptide induced robust proliferation of both TRP1high and TRP1low CD8+ T cells but did not induce expression of PD-1. Cytokine production from K8-stimulated TRP1 cells was minimal, whereas cytotoxicity was increased. Upon transfer into B16 tumor-bearing mice, the reference peptide (TRP1-M9)- and K8-stimulated TRP1 cells were equally effective at controlling tumor growth but accomplished this through different mechanisms. TRP1-M9-stimulated cells produced more IFNγ, whereas K8-stimulated cells accumulated to higher numbers and were more cytotoxic. We, therefore, conclude that TCR recognition of weakly binding peptides during priming can skew the effector function of tumor-specific CD8+ T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.