Leishmaniasis is an endemic disease caused by protozoa of the genus Leishmania, which affects around two million people worldwide. One major drawback in the treatment of leishmaniasis is the emergence of resistance to current chemotherapeutics. Medicinal and aromatic plants constitute a major source of natural organic compounds. In this study, the leaf essential oil of Cryptocarya aschersoniana was obtained by hydrodistillation in a Clevenger-type apparatus, and the chemical composition was analyzed by GC-MS and GC-FID. The essential oil of these species was predominantly constituted by monoterpene hydrocarbons (48.8%). Limonene (42.3%), linalool (9.7%) and nerolidol (8.6%) were the main constituents in the oil of C. aschersoniana. The in vitro activity of the oil was evaluated against the promastigote forms of Leishmania amazonensis, the causative agent of cutaneous leishmaniasis in humans. The essential oil of C. aschersoniana showed high activity against L. amazonensis promastigote forms (IC 50 = 4.46 µg/mL), however, it also demonstrated a relatively high cytotoxicity on mouse peritoneal macrophages (CC 50 = 7.71 µg/mL). This is the first report of the chemical composition and the leishmanicidal and cytotoxic activities of the leaf essential oil of C. aschersoniana.
Leishmaniasis and trypanosomiasis are globally widespread parasitic diseases which have been responsible for high mortality rates. Since drugs available for their treatment are highly hepatotoxic, nephrotoxic and cardiotoxic, adherence to therapy has been affected. Thus, the search for new, more effective and safer drugs for the treatment of these diseases is necessary. Natural products have stood out as an alternative to searching for new bioactive molecules with therapeutic potential. In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and the promastigote forms of Leishmania amazonensis were evaluated. The essential oil was promising against trypomastigote forms of T. cruzi (IC 50 = 28.55 μg.mL -1 ) and L.amazonensis promastigotes (IC 50 = 2.28 μg.mL -1 ). Eighteen chemical constituents were identified by GasChromatography coupled to Mass Spectrometry (GC-MS) in the essential oil, whose major constituents were spathulenol (17.6 %), caryophyllene oxide (16.4 %), β-caryophyllene (14.0 %) and myrcene (8.4 %).In addition, the essential oil from P. ovatum leaves had moderate cytotoxicity against LLCMK 2 adherent epithelial cell at the concentration range under analysis (CC 50 = 150.9 μg.mL -1 ). It should be highlighted that this is the first report of the chemical composition and anti-Trypanosoma cruzi and anti-Leishmania amazonensis activities of the essential oil from Protium ovatum leaves.
We have evaluated the antischistosomal activity of synthetic dihydrobenzofuran neolignans (DBNs) derived from (±)-trans-dehydrodicoumaric acid dimethyl ester (1) and (±)-trans-dehydrodiferulic acid dimethyl ester (2) against adult Schistosoma mansoni worms in vitro. Compound 4 ((±)-trans-4-O-acetyldehydrodiferulic acid dimethyl ester) displayed the most promising activity; at 200 μm, it kills 100 ± 0% of worms after 24 h, which resembles the result achieved with praziquantel (positive control) at 1.56 μm. The hydrogenation of the double bond between C7' and C8', the introduction of an additional methyl group at C3', and a double bond between C7 and C8 decreased the schistosomicidal activity of DBNs. On the other hand, the presence of the acetoxy group at C4 played an interesting role in this activity. These results demonstrated the interesting schistosomicidal potential of DBNs, which could be further exploited.
The chemotherapy of schistosomiasis remains centered in the use of praziquantel, however, there has been growing resistant parasites to this drug. Thus, the aim of this work was to evaluate in vitro schistosomicidal activity of the hexanes/dichloromethane 1 : 1 extract of Brazilian green propolis (Pex), as well as its major isolated compounds artepillin C, caffeic acid, coumaric acid and drupanin against Schistosoma mansoni. The Pex was active by displaying an IC50 value of 36.60 (26.26–51.13) μg mL−1 at 72 h against adult worms of S. mansoni. The major isolated compounds were inactive with IC50 values >100 μM, however, the combination of the isolated compounds (CM) in the same range found in the extract was active with an IC50 value of 41.17 (39.89–42.46) μg mL−1 at 72 h. Pex and CM induced alteration in the tegument of S. mansoni, and caffeic acid caused alteration in egg's maturation. Pex displayed in vitro activity against adult worms’ and eggs’ viability of S. mansoni, which opens new perspectives to better understand the synergistic and/or additive effects promoted by both Pex extract and CM against schistosomiasis features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.