Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 μM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.
Mpro, also known as 3CLpro, is the main protease of the SARS-CoV-2 coronavirus and, as such, is essential for the viral life cycle. Two studies have each screened and ranked in silico more than one billion chemical compounds in an effort to identify putative inhibitors of Mpro. More than five hundred of the seven thousand top-ranking hits were synthesized by an external supplier and examined with respect to their activity in two biochemical assays: a protease activity assay and a thermal shift assay. Two clusters of chemical compounds with Mpro inhibitory activity were identified. An additional five hundred molecules, analogues of the compounds in the two clusters described above, were also synthesized and characterized in vitro. The study of the analogues revealed that the compounds of the first cluster acted by denaturing Mpro and might denature other proteins as well. In contrast, the compounds of the second cluster targeted Mpro with much greater specificity and enhanced its melting temperature, consistent with the formation of stable Mpro-inhibitor complexes. The most active compounds of the second cluster exhibited IC50 values between 4 and 7 μM and their chemical structure suggests that they could serve as leads for the development of potent Mpro inhibitors.
Mature B cells recognize and respond in a highly-specific fashion to a multitude of environmental antigens through membrane-bound immunoglobulins forming together with the Igα and Igβ proteins a functional unit called the B cell antigen receptor (BCR). Through a complex network of effector molecules, the BCR transforms environmental signals into biochemical reactions which are responsible for highly codified cellular responses affecting survival, proliferation, migration and terminal differentiation of B cells. Surface BCR expression is conserved in most types of B cell malignancies arising from mature B cells. This observation, together with genetic and biochemical evidence pointing to sustained BCR signaling in different types of B cell neoplasms represents the rationale for the current use of pharmacological inhibitors of BCR signaling to treat several forms of B lymphoproliferative disorders. Nevertheless, our understanding of how the BCR influences malignant B cell behavior remains poorly understood. In an attempt to fill this knowledge gap, we engineered a mouse model to monitor the effects of acute ablation of the BCR in highly-aggressive MYC-driven lymphomas. Inducible BCR ablation did not, per se, prevent the outgrowth of receptor-less MYC lymphoma cells both in vitro and in vivo. Instead, BCR loss weakened the fitness of the malignant B cells leading to the rapid elimination of BCR-less tumor cells in the presence of their BCR-expressing counterparts (Varano et al., 2017). Through the integration of data generated from genomics, metabolomics and bulk/single cell transcriptomics analyses, comparing BCR-deficient lymphoma cells to their proficient counterparts, we have started to elucidate the gene networks and metabolic pathways influenced by BCR expression that sustain competitive fitness of MYC-transformed lymphoma B cells. Data from CRISPR/Cas9-mediated disruption of candidate fitness genes in primary malignant B cells will be presented. In support of the findings in the mouse model, we will provide evidence that BCR-less malignant B cells are spontaneously generated during tumor progression in several forms of human B cell lymphoproliferative disorders, establishing a possible Achilles heel of anti-BCR therapies. Finally, we will report possible strategies enabling the clearance of BCR-less lymphoma cells, taking advantage of their acquired addiction to specific signaling and metabolic pathways. Our results shed light on the coordinated regulation of signaling and metabolism imposed on malignant B cells by BCR expression/signaling and provide indications for improved treatment options to fight several forms of mature B cell malignancies. Reference: Varano G, Raffel S, Sormani M, Zanardi F, Lonardi S, Zasada C, Perucho L, Petrocelli V, Haake A, Lee AK, Bugatti M, Paul U, Van Anken E, Pasqualucci L, Rabadan R, Siebert R, Kempa S, Ponzoni M, Facchetti F, Rajewsky K, Casola S. Nature. 2017; 546:302-306. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.