dThe drugs available for Chagas disease treatment are toxic and ineffective. We studied the in vivo activity of a new drug, lychnopholide (LYC). LYC was loaded in nanocapsules (NC), and its effects were compared to free LYC and benznidazole against Trypanosoma cruzi. Infected mice were treated in the acute phase at 2.0 mg/kg/day with free LYC, LYC-poly--caprolactone NC (LYC-PCL), and LYC-poly(lactic acid)-co-polyethylene glycol NC (LYC-PLA-PEG) or at 50 mg/kg/day with benznidazole solution by the intravenous route. Animals infected with the CL strain, treated 24 h after infection for 10 days, evaluated by hemoculture, PCR, and enzyme-linked immunosorbent assay exhibited a 50% parasitological cure when treated with LYC-PCL NC and 100% cure when treated with benznidazole, but 100% of the animals treated during the prepatent period for 20 days with these formulations or LYC-PLA-PEG NC were cured. In animals with the Y strain treated 24 h after infection for 10 days, only mice treated by LYC-PCL NC were cured, but animals treated in the prepatent period for 20 days exhibited 100, 75, and 62.5% cure when treated with LYC-PLA-PEG NC, benznidazole, and LYC-PCL NC, respectively. Free LYC reduced the parasitemia and improved mice survival, but no mice were cured. LYC-loaded NC showed higher cure rates, reduced parasitemia, and increased survival when used in doses 2five times lower than those used for benznidazole. This study confirms that LYC is a potential new treatment for Chagas disease. Furthermore, the long-circulating property of PLA-PEG NC and its ability to improve LYC efficacy showed that this formulation is more effective in reaching the parasite in vivo.
Chagas disease is a life-threatening infection caused by a variety of genetically diverse strains of the protozoan parasite Trypanosoma cruzi. The current treatment (benznidazole and nifurtimox) is unsatisfactory, and potential alternatives include inhibitors of sterol 14␣-demethylase (CYP51), the cytochrome P450 enzyme essential for the biosynthesis of sterols in eukaryotes and the major target of clinical and agricultural antifungals. Here we performed a comparative investigation of two protozoon-specific CYP51 inhibitors, VNI and its CYP51 structure-based derivative VFV, in the murine models of infection caused by the Y strain of T. cruzi. The effects of different treatment regimens and drug delivery vehicles were evaluated in animals of both genders, with benznidazole serving as the reference drug. Regardless of the treatment scheme or delivery vehicle, VFV was more potent in both genders, causing a Ͼ99.7% peak parasitemia reduction, while the VNI values varied from 91 to 100%. Treatments with VNI and VFV resulted in 100% animal survival and 0% natural relapse after the end of therapy, though, except for the 120-day treatment schemes with VFV, relapses after three cycles of immunosuppression were observed in each animal group, and quantitative PCR analysis revealed a very light parasite load in the blood samples (sometimes below or near the detection limit, which was 1.5 parasite equivalents/ml). Our studies support further investigations of this class of compounds, including their testing against other T. cruzi strains and in combination with other drugs.
The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD. (1), is a neglected pathology caused by the obligately intracellular protozoan parasite Trypanosoma cruzi. The disease is endemic in 21 countries of Central and South America, where about 8 million people are infected and more than 12,000 die annually (http: //www.dndial.org). The treatment for CD is limited to the use of two nitroderivatives (benznidazole [Bz] and nifurtimox [Nf]), which are largely unsatisfactory, indicating a need for novel, safer, and more efficient therapies (2). Although a large number of in vitro and in vivo studies have been performed on experimental chemotherapy of novel drug candidates for CD, besides Bz and Nf, very few compounds have moved to clinical trials (3). C hagas disease (CD), discovered by Carlos ChagasRecently, two antifungal drugs, posaconazole and E1224 (the prodrug of ravuconazole), which are inhibitors of fungal sterol 14a-demethylase (CYP51), were evaluated as potential antichagasic drugs on chronic patients, but unfortunately both displayed rather high (70 to 80%) rates of therapeutic failure (4, 5). It has been suggested that at least part of this unexpected failure could be due to the lack of translation from in vitro and in vivo models to the clinic and that a redesign of the current screening strategy during the drug discovery process should be considered (5). On the other hand, recent data demonstrated the potency and selectivity of a novel experimental inhibitor of T. cruzi CYP51, the VNI molecule, which yielded promising in vivo findings even with highly resistant T. cruzi strains (6). In this vein, we evaluated the effects and outco...
Chagas disease (CD) is a neglected parasitic condition endemic in the Americas caused by Trypanosoma cruzi. Patients present an acute phase that may or not be symptomatic, followed by lifelong chronic stage, mostly indeterminate, or with cardiac and/or digestive progressive lesions. Benznidazole (BZ) and nifurtimox are the only drugs approved for treatment but not effective in the late chronic phase and many strains of the parasite are naturally resistant. New alternative therapy is required to address this serious public health issue. Repositioning and combination represent faster, and cheaper trial strategies encouraged for neglected diseases. The effect of imatinib (IMB), a tyrosine kinase inhibitor designed for use in neoplasias, was assessed in vitro on T. cruzi and mammalian host cells. In comparison with BZ, IMB was moderately active against different strains and forms of the parasite. The combination IMB + BZ in fixed-ratio proportions was additive. Novel 14 derivatives of IMB were screened and a 3,2-difluoro-2-phenylacetamide (3e) was as potent as BZ on T. cruzi but had low selectivity index. The results demonstrate the importance of phenotypic assays, encourage the improvement of IMB derivatives to reach selectivity and testify to the use of repurposing and combination in drug screening for CD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.