Cabergoline treatment at the time of conception appears to be safe for both the pregnancy and the neonate, although more data are still needed on a larger number of pregnancies.
In women, ovary and adrenal gland produce androgens. Androgens are essential drivers of the primordial to antral follicle development, prior to serving as substrate for estrogen production in the later stages of folliculogenesis. Androgens play a crucial role in the follicular-stromal intertalk by fine tuning the extracellular matrix and vessel content of the ovarian stroma. Local auto-and paracrine factors regulate androgen synthesis in the pre-antral follicle. Androgen excess is a hallmark of polycystic ovary syndrome and is a key contributor in the exaggerated antral follicle formation, stromal hyperplasia and hypervascularity. Hyperandrogenaemia overrides the follicular-stromal dialog, resulting in follicular arrest and disturbed ovulation. On the other hand, androgen deficiency is likely to have a negative impact on fertility as well, and further research is needed to examine the benefits of androgen-replacement therapy in subfertility.
SummaryA new diagnosis of primary adrenal insufficiency (PAI) during pregnancy is extremely rare and difficult to recognize as signs and symptoms such as nausea, fatigue and hypotension may resemble features of normal pregnancy. However, if the diagnosis is overlooked and steroid replacement delayed, subsequent adrenal crisis triggered by hyperemesis gravidarum, fever or delivery can cause severe maternal and foetal morbidity and even mortality. In case of clinical suspicion of PAI, we recommend to measure paired samples of cortisol and ACTH and, if clinically feasible, a short synacthen test. We propose trimester-specific pass cut-offs for the short synacthen test that take into account the rise of total and also free cortisol during pregnancy. Empirical hydrocortisone treatment should never be delayed if the clinical suspicion is high. All pregnant women with PAI should be monitored by a team of endocrine and obstetric specialists. The third trimester is physiologically associated with a rise not only in total but also free cortisol and thus requires regular adjustment of the glucocorticoid dose. Mineralocorticoid requirements may change during pregnancy due to the anti-mineralocorticoid properties of progesterone. As plasma renin physiologically increases in pregnancy, monitoring is limited to clinical assessment including blood pressure and serum electrolytes. It is crucial that a pregnant woman with PAI and her partner are well educated regarding the adjustment of glucocorticoid dose in intercurrent illness and that both are trained in hydrocortisone emergency injection techniques. The obstetric staff should be provided with clear and written guidance for hydrocortisone cover during labour and delivery. With the appropriate replacement therapy, PAI patients can expect to have an uneventful pregnancy and deliver a healthy infant.
The ovarian follicle is a major site of steroidogenesis, crucially required for normal ovarian function and female reproduction. Our understanding of androgen synthesis and metabolism in the developing follicle has been limited by the sensitivity and specificity issues of previously used assays. Here we used liquid chromatography–tandem mass spectrometry to map the stage-dependent endogenous steroid metabolome in an encapsulated in vitro follicle growth system, from murine secondary through antral follicles. Furthermore, follicles were cultured in the presence of androgen precursors, nonaromatizable active androgen, and androgen receptor (AR) antagonists to assess effects on steroidogenesis and follicle development. Cultured follicles showed a stage-dependent increase in endogenous androgen, estrogen, and progesterone production, and incubations with the sex steroid precursor dehydroepiandrosterone revealed the follicle as capable of active androgen synthesis at early developmental stages. Androgen exposure and antagonism demonstrated AR–mediated effects on follicle growth and antrum formation that followed a biphasic pattern, with low levels of androgens inducing more rapid follicle maturation and high doses inhibiting oocyte maturation and follicle growth. Crucially, our study provides evidence for an intrafollicular feedback circuit regulating steroidogenesis, with decreased follicle androgen synthesis after exogenous androgen exposure and increased androgen output after additional AR antagonist treatment. We propose that this feedback circuit helps maintain an equilibrium of androgen exposure in the developing follicle. The observed biphasic response of follicle growth and function in increasing androgen supplementations has implications for our understanding of polycystic ovary syndrome pathophysiology and the dose-dependent utility of androgens in in vitro fertilization settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.