Experimental models of peripheral nerve injury have been developed to study mechanisms of neuropathic pain. In the spared nerve injury (SNI) model in rats, the common peroneal and tibial nerves are injured, producing consistent and reproducible pain hypersensitivity in the territory of the spared sural nerve. In this study, we investigated whether SNI in mice is also a valid model system for neuropathic pain. SNI results in a significant decrease in withdrawal threshold in SNI-operated mice. The effect is very consistent between animals and persists for the four weeks of the study. We also determined the relative frequency of paw withdrawal for each of a series of 11 von Frey hairs. Analysis of response frequency using a mixed-effects model that integrates all variables (nerve injury, paw, gender, and time) shows a very stable effect of SNI over time and also reveals subtle divergences between variables, including gender-based differences in mechanical sensitivity. We tested two variants of the SNI model and found that injuring the tibial nerve alone induces mechanical hypersensitivity, while injuring the common peroneal and sural nerves together does not induce any significant increase in mechanical sensitivity in the territory of the spared tibial nerve. SNI induces a mechanical allodynia-like response in mice and we believe that our improved method of assessment and data analysis will reveal additional internal and external variability factors in models of persistent pain. Use of this model in genetically altered mice should be very effective for determining the mechanisms involved in neuropathic pain.
Background: Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/ 6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice.
Oxytocin (OT) orchestrates social and emotional behaviors through modulation of neural circuits. In the central amygdala (CeA), the release of OT modulates inhibitory circuits and, thereby, suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function and pharmacological approaches, we demonstrate that a morphologically distinct subpopulation of astrocytes expresses OT receptors and mediates anxiolytic and positive reinforcement effects of OT in the CeA of mice and rats. The involvement of astrocytes in OT signaling challenges the long-held dogma that OT acts exclusively on neurons and highlights astrocytes as essential components for modulation of emotional states under normal and chronic pain conditions.
Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Na v s) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na v s remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Na v s, in the pathogenesis of neuropathic pain in mice. The spared nerve injury (SNI) model of traumatic nerve injury-induced neuropathic pain was used, and an Na v 1.7-specific inhibitor, ProTxII, allowed the isolation of Na v 1.7-mediated currents. SNI decreased NEDD4-2 expression in DRG cells and increased the amplitude of Na v 1.7 and Na v 1.8 currents. The redistribution of Na v 1.7 channels toward peripheral axons was also observed. Similar changes were observed in the nociceptive DRG neurons of Nedd4L knockout mice (SNS-Nedd4L -/-). SNS-Nedd4L -/-mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Na v 1.7 and Na v 1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Na v s and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.