Coastal flooding is a significant and increasing hazard. There are multiple drivers including rising coastal water levels, more intense hydrologic inputs, shoaling groundwater and urbanization. Accurate coastal flood event prediction poses numerous challenges: representing boundary conditions, depicting terrain and hydraulic infrastructure, integrating spatially and temporally variable overtopping flows, routing overland flows and incorporating hydrologic signals. Tremendous advances in geospatial data quality, numerical modeling and overtopping estimation have significantly improved flood prediction; however, risk assessments do not typically consider the co-occurrence of multiple flooding pathways. Compound flooding refers to the combined effects of marine and hydrologic processes. Alternatively, multiple flooding source–receptor pathways (e.g., groundwater–surface water, overtopping–overflow, surface–sewer flow) may simultaneously amplify coastal hazard and vulnerability. Currently, there is no integrated framework considering compound and multi-pathway flooding processes in a unified approach. State-of-the-art urban coastal flood modeling methods and research directions critical to developing an integrated framework for explicitly resolving multiple flooding pathways are presented.
Following the Ridgecrest earthquake sequence, consisting of an M 6.4 foreshock and M 7.1 mainshock along with many other events, the Geotechnical Extreme Events Reconnaissance association deployed a team to gather perishable data. The team focused their efforts on documenting ground deformations including surface fault rupture south of the Naval Air Weapons Station China Lake, and liquefaction features in Trona and Argus. The team published a report within two weeks of the M 7.1 mainshock. This article presents data products gathered by the team, which are now published and publicly accessible. The data products presented herein include ground-based observations using Global Positioning System trackers, digital cameras, and hand-measuring devices, as well as unmanned aerial vehicle-based imaging products using Structure from Motion to create point clouds and digital surface models. The article describes the data products, as well as tools available for interacting with the products.
Coastal flooding is a significant humanitarian and socioeconomic hazard (e.g., Nicholls, 2010). Global mean sea levels are expected to rise over the coming century and mean higher high water (MHHW) and mean high water (MHW), peak levels that drive coastal flooding, show upward trends in many locations (Mawdsley et al., 2015). Significant coastal flooding will occur by 2050 (e.g., Tebaldi et al., 2012; Sweet and Park, 2014). Wave overtopping is primary driver of coastal flooding. Low-lying urbanized sand spits, backed by an estuary are particularly vulnerable to sea level rise. Recent field observations suggest distinct feedbacks between wave overtopping, beach groundwater levels and backshore vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.