SummaryInfections with the microaerophilic parasite Trichomonas vaginalis are treated with the 5-nitroimidazole drug metronidazole, which is also in use against Entamoeba histolytica, Giardia intestinalis and microaerophilic/anaerobic bacteria. Here we report that in T. vaginalis the flavin enzyme thioredoxin reductase displays nitroreductase activity with nitroimidazoles, including metronidazole, and with the nitrofuran drug furazolidone. Reactive metabolites of metronidazole and other nitroimidazoles form covalent adducts with several proteins that are known or assumed to be associated with thioredoxin-mediated redox regulation, including thioredoxin reductase itself, ribonucleotide reductase, thioredoxin peroxidase and cytosolic malate dehydrogenase. Disulphide reducing activity of thioredoxin reductase was greatly diminished in extracts of metronidazole-treated cells and intracellular non-protein thiol levels were sharply decreased. We generated a highly metronidazoleresistant cell line that displayed only minimal thioredoxin reductase activity, not due to diminished expression of the enzyme but due to the lack of its FAD cofactor. Reduction of free flavins, readily observed in metronidazole-susceptible cells, was also absent in the resistant cells. On the other hand, iron-depleted T. vaginalis cells, expressing only minimal amounts of PFOR and hydrogenosomal malate dehydrogenase, remained fully susceptible to metronidazole. Thus, taken together, our data suggest a flavin-based mechanism of metronidazole activation and thereby challenge the current model of hydrogenosomal activation of nitroimidazole drugs.
IgE recognition of indoor allergens represents a major cause of allergic asthma in atopic individuals. We found that 52 of 102 patients suffering from allergic symptoms indoors contained IgE Abs against allergens from the Indianmeal moth (Plodia interpunctella), a ubiquitous food pest. Using serum IgE from a moth-sensitized patient we screened an expression cDNA library constructed from P. interpunctella larvae. cDNAs coding for arginine kinase (EC 2.7.3.3), a 40-kDa enzyme commonly occurring in invertebrates that is involved in the storage of such high-energy phosphate bonds as phosphoarginine, were isolated. Recombinant moth arginine kinase, designated Plo i 1, was expressed in Escherichia coli as a histidine-tagged protein with enzymatic activity, and purified to homogeneity by nickel chelate affinity chromatography. Purified recombinant arginine kinase induced specific basophil histamine release and immediate as well as late-phase skin reactions. It reacted with serum IgE from 13 of the 52 (25%) moth-allergic patients and inhibited the binding of allergic patients’ IgE to an immunologically related 40-kDa allergen present in house dust mite, cockroach, king prawn, lobster, and mussel. Our results indicate that arginine kinases represent a new class of cross-reactive invertebrate pan-allergens. Recombinant arginine kinase may be used to identify a group of polysensitized indoor allergic patients and for immunotherapy of these individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.