I am grateful to my advisor Álvaro Veiga and the professors Alexandre Street and Carlos Kubrusly for their excellent technical assistance and inspiring lectures. I would like to express my gratitude to all members of LAMPS (Laboratory of Applied Mathematical Programming and Statistics) for the daily support and fruitful discussions. I would like to acknowledge the collaboration with Joaquim Garcia, which was essential to the development of this work. A special thanks to Thuener Silva for the support regarding the software development of the SDP solver. Since all code used in this work was developed in the Julia language, I would like to thank all developers involved in this open source project. In particular, I would like to acknowledge the developers of the package JuMP. The use of the domain-specific modeling language for mathematical optimization, JuMP, was fundamental for the development of this work. A special thanks to Benoît Legat for helping with ProxSDP's MOI interface. Finally, I would also like to thank the Brazilian agency CNPq and PUC-Rio university for financial support.
Motivated by the challenges of processing the vast amount of available data, recent research on the flourishing field of high-dimensional statistics is bringing new techniques for modeling and drawing inferences over large amounts of data. Simultaneously, other fields like signal processing and optimization are also producing new methods to deal with large scale problems. More particularly, this work is focused on the theories and methods based onAfter a comprehensive review of the 1 -norm as tool for finding sparse solutions, we study more deeply the LASSO shrinkage method. In order to show how the LASSO can be used for a wide range of applications, we exhibit a case study on sparse signal processing. Based on this idea, we present the 1 level-slope filter. Experimental results are given for an application on the field of fiber optics communication.For the final part of the thesis, a new estimation method is proposed for high-dimensional models with periodic variance. The main idea of this novel methodology is to combine sparsity, induced by the 1 -regularization, with the maximum likelihood criteria. Additionally, this novel methodology is used for building a monthly stochastic model for wind and hydro inflow. Simulations and forecasting results for a real case study involving fifty Brazilian renewable power plants are presented. Motivado pelos desafios de processar a grande quantidade de dados disponíveis, pesquisas recentes em estatística tem sugerido novas técnicas de modeloagem e inferência. Paralelamente, outros campos como processamento de sinais e otimização também estão produzindo métodos para lidar problemas em larga escala. Em particular, este trabalhoé focado nas teorias e métodos baseados na regularização 1 . KeywordsApós uma revisão compreensiva da norma 1 como uma ferramenta para defenir soluções esparsas, estudaremos mais a fundo o método LASSO. Para exemplificar como o LASSO possui uma ampla gama de aplicações, exibimos um estudo de caso em processamento de sinal esparso. Baseado nesta idea, apresentamos o 1 level-slope filter. Resultados experimentais saõ apresentados para uma aplicação em transmissão de dados via fibraóptica.Para a parte final da dissertação, um novo método de estimaçãoé proposto para modelos em alta dimensão com variância periódica. A principal ideia desta nova metodologiaé combinar esparsidade, induzida pela regularização 1 , com o método de máxima verossimilhança. Adicionalmente, esta metodoogiaé utilizada para estimar os parâmetros de um modelo mensal estocástico de geração de energia eólica e hídrica. Simulações e resultados de previsão são apresentados para um estudo real envolvendo cinquenta geradores de energia renovável do sistema Brasileiro. Palavras-chaveEstatística em alta dimensão; LASSO; Regularização; Processamento de sinais esparsos; Modelagem de energia renovável; Energia eólica; PCH; Monitoramento de fibrasópticas. PUC-Rio -Certificação Digital Nº 1221681/CB
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.