Understanding the long-term earthquake recurrence pattern at subduction zones requires continuous paleoseismic records with excellent temporal and spatial resolution and stable threshold conditions. South central Chilean lakes are typically characterized by laminated sediments providing a quasi-annual resolution. Our sedimentary data show that lacustrine turbidite sequences accurately reflect the historical record of large interplate earthquakes (among others the 2010 and 1960 events). Furthermore, we found that a turbidite's spatial extent and thickness are a function of the local seismic intensity and can be used for reconstructing paleo-intensities. Consequently, our multilake turbidite record aids in pinpointing magnitudes, rupture locations, and extent of past subduction earthquakes in south central Chile. Comparison of the lacustrine turbidite records with historical reports, a paleotsunami/subsidence record, and a marine megaturbidite record demonstrates that the Valdivia Segment is characterized by a variable rupture mode over the last 900 years including (i) full ruptures (M w~9 .5: 1960, 1575, 1319 ± 9, 1127 ± 44), (ii) ruptures covering half of the Valdivia Segment (M w~9 : 1837), and (iii) partial ruptures of much smaller coseismic slip and extent (M w~7 .5-8: 1737, 1466 ± 4). Also, distant or smaller local earthquakes can leave a specific sedimentary imprint which may resolve subtle differences in seismic intensity values. For instance, the 2010 event at the Maule Segment produced higher seismic intensities toward southeastern localities compared to previous megathrust ruptures of similar size and extent near Concepciόn.
Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia.
We present an exceptionally long and continuous coastal lacustrine record of ~5500 years from Lake Huelde on the west coast of Chiloé Island in south central Chile. The study area is located within the rupture zone of the giant AD 1960 Great Chilean Earthquake (M W 9.5). The subsequent earthquake-induced tsunami inundated Lake Huelde and deposited mud rip-up clasts, massive sand and a mud cap in the lake. Long sediment cores from 8 core sites within Lake Huelde reveal 16 additional sandy layers in the 5500 year long record. The sandy layers share sedimentological similarities with the deposit of the AD 1960 tsunami and other coastal lake tsunami deposits elsewhere. On the basis of general and site-specific criteria we interpret the sandy layers as tsunami deposits. Age-control is provided by four different methods, 1) 210 Pb-dating, 2) the identification of the 137 Cs-peak, 3) an infrared stimulated luminescence (IRSL) date and 4) 22 radiocarbon dates. The ages of each tsunami deposit are modelled using the Bayesian statistic tools of OxCal and Bacon. The record from Lake Huelde matches the 8 regionally known tsunami deposits from documented history and geological evidence from the last ~2000 years without overor underrepresentation. We extend the existing tsunami history by 9 tsunami deposits. We discuss the advantages and disadvantages of various sedimentary environments for tsunami deposition and preservation, e.g. we find that Lake Huelde is 2 to 3 times less sensitive to relative sea-level change in comparison to coastal marshes in the same region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.