Several bacteria pathogens are responsible for plant diseases causing significant economic losses. The antibacterial activity of Dunaliella salina microalgae extracts were investigated in vitro and in vivo. First, biomass composition was chemically characterized and subjected to extraction using polar/non-polar solvents. The highest extraction yield was obtained using chloroform:methanol (1:1 v/v) equal to 170 mg g−1 followed by ethanol (88 mg g−1) and hexane (61 mg g−1). In vitro examination of hexane extracts of Dunaliella salina demonstrated antibacterial activity against all tested bacteria. The hexane extract showed the highest amount of β-carotene with respect to the others, so it was selected for subsequent analyses. In vivo studies were also carried out using hexane extracts of D. salina against Pseudomonas syringae pv. tomato and Pectobacterium carotovorum subsp. carotovorum on young tomato plants and fruits of tomato and zucchini, respectively. The treated young tomato plants exhibited a reduction of 65.7% incidence and 77.0% severity of bacterial speck spot disease. Similarly, a reduction of soft rot symptoms was observed in treated tomato and zucchini fruits with a disease incidence of 5.3% and 12.6% with respect to 90.6% and 100%, respectively, for the positive control.
The production of beneficial microorganisms is the first step to obtain a commercial-based product for application in agriculture. In this study, prickly pear (Opuntia ficus-indica) pruning waste was evaluated as a raw material for the production of large amounts of Plant Growth Promoting Microorganisms (PGPMs) reducing the number of generated wastes. Specifically, five PGPMs constituting a synthetic microbial consortium with complementing plant growth-promoting traits were grown on a laboratory scale and, subsequently, on a pilot scale using a 21-L bioreactor. Primarily, the physical-chemical characterization of the culture medium obtained from the juice of Opuntia cladodes was carried out, revealing the presence of sugars and organic acids with different molar ratios. Compared to conventional media, the waste medium did not show significant differences in bacterial growth efficiency. Instead, the survival rates of the bacteria grown in cladodes juice media, after air-drying on zeolite or freeze-drying, were significantly higher than those observed when they were grown in conventional media. The present work is the first conducted on a pilot-scale that maximizes the production of PGPMs in submerged fermentation using cladodes juice from Opuntia, reducing both economic and environmental impacts associated with the generation of wastes.
Biomass-derived sugars are platform molecules that can be converted into a variety of final products. Non-food, lignocellulosic feedstocks, such as agroforest residues and low inputs, high yield crops, are attractive bioresources for the production of second-generation sugars. Biorefining schemes based on the use of versatile technologies that operate at mild conditions contribute to the sustainability of the bio-based products. The present work describes the conversion of giant reed (Arundo donax), a non-food crop, to ethanol and furfural (FA). A sulphuric-acid-catalyzed steam explosion was used for the biomass pretreatment and fractionation. A hybrid process was optimized for the hydrolysis and fermentation (HSSF) of C6 sugars at high gravity conditions consisting of a biomass pre-liquefaction followed by simultaneous saccharification and fermentation with a step-wise temperature program and multiple inoculations. Hemicellulose derived xylose was dehydrated to furfural on the solid acid catalyst in biphasic media irradiated by microwave energy. The results indicate that the optimized HSSF process produced ethanol titers in the range 43–51 g/L depending on the enzymatic dosage, about 13–21 g/L higher than unoptimized conditions. An optimal liquefaction time before saccharification and fermentation tests (SSF) was 10 h by using 34 filter paper unit (FPU)/g glucan of Cellic® CTec3. C5 streams yielded 33.5% FA of the theoretical value after 10 min of microwave heating at 157 °C and a catalyst concentration of 14 meq per g of xylose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.