This paper presents and compares WordNetbased and distributional similarity approaches. The strengths and weaknesses of each approach regarding similarity and relatedness tasks are discussed, and a combination is presented. Each of our methods independently provide the best results in their class on the RG and WordSim353 datasets, and a supervised combination of them yields the best published results on all datasets. Finally, we pioneer cross-lingual similarity, showing that our methods are easily adapted for a cross-lingual task with minor losses.
The Web offers a corpus of over 100 million tables [6], but the meaning of each table is rarely explicit from the table itself. Header rows exist in few cases and even when they do, the attribute names are typically useless. We describe a system that attempts to recover the semantics of tables by enriching the table with additional annotations. Our annotations facilitate operations such as searching for tables and finding related tables.To recover semantics of tables, we leverage a database of class labels and relationships automatically extracted from the Web. The database of classes and relationships has very wide coverage, but is also noisy. We attach a class label to a column if a sufficient number of the values in the column are identified with that label in the database of class labels, and analogously for binary relationships. We describe a formal model for reasoning about when we have seen sufficient evidence for a label, and show that it performs substantially better than a simple majority scheme. We describe a set of experiments that illustrate the utility of the recovered semantics for table search and show that it performs substantially better than previous approaches. In addition, we characterize what fraction of tables on the Web can be annotated using our approach.
As part of a large effort to acquire large repositories of facts from unstructured text on the Web, a seed-based framework for textual information extraction allows for weakly supervised extraction of class attributes (e.g., side effects and generic equivalent for drugs) from anonymized query logs. The extraction is guided by a small set of seed attributes, without any need for handcrafted extraction patterns or further domain-specific knowledge. The attributes of classes pertaining to various domains of interest to Web search users have accuracy levels significantly exceeding current state of the art. Inherently noisy search queries are shown to be a highly valuable, albeit unexplored, resource for Web-based information extraction, in particular for the task of class attribute extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.