Today, fungicides are part of the basic tool kit for indoor surface maintenance. However, fungi develop resistance to fungicides, which consequently accelerates the evolution of virulence. Fungicides also carry the risk of adverse effects in humans. Galvanic microcells are a new tool for fungal control on indoor surfaces. We used two types of electrodes, Zn and Cu, with two potential anti-fungal mechanisms: the oligodynamic action of the metal ions themselves and the electricidal effect of the current between the electrodes. The size of the inhibition zone is related to the distance between the electrodes. We hypothesized that the unique geometric properties of the observed inhibition zone could be modelled using multi foci curve Cassini ovals. Moreover, the size of the inhibition zone possessed two maximum values, while the shape of the observed inhibition zones correlated with the shape of the electric field strength. The control activity of the galvanic microcells correlated with decreasing water content in building materials. Thus, this acute antifungal system works the best in damp building environments where the risk of fungal contamination is highest.
This study presents research related to the antiviral activity of painted surfaces containing galvanic microcells of zinc and copper. The aim of this study was to investigate the virucidal activity of galvanic microcells of zinc and copper grains fixed with adequate homogeneity and degree of aggregation in water-based acrylic paint layers in reference to a non-treated reference control. This paper provides evidence that a paint coating with a total copper surface area of 4.4% displays antiviral activity against human coronavirus NL63 according to ISO 21702 and inactivates > 99% of virus after 4 h of contact relative to a non-treated reference control.
This study presents the first research related to fungal and bacterial growth within electromagnetic fields generated by three-electrode galvanic cells, with PDA growth medium as an electrolyte. We used galvanic microcells constructed with copper, bismuth and zinc metal bars. The configuration of these electrodes was a fundamental agent in the creation of a maximum inhibition zone and in bismuth ion movement. Fungal strains, such as Aspergillus tubingensis and Rhodotorula mucilaginosa, and the bacterium Micrococcus luteus were used as model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.