Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves. Communities of gut bacteria play key roles in nutrient acquisition, vitamin supplementation, and disease resistance. Their diversity often covaries with host diet, both across lineages with different ecological niches and between conspecific populations in different habitats or geographic regions (1-3). Elucidating the significance of single bacterial taxa in omnivores such as humans is dauntingly complex (3, 4), but insects with specialized diets have regularly offered gut microbiota study systems that are dominated by a limited number of species (5-7). Several insect-microbial symbioses are evolutionarily ancient so that extensive functional complementarity between hosts and symbionts could evolve, as in aphids that rely on Buchnera for the production of essential amino acids (8, 9). Other mutualisms have more recent origins, such as bedbugs that rely on Wolbachia for vitamin B production (10, 11) or wood-eating beetles that carry nitrogen-fixing gut bacteria in order to subsist on protein-poor diets (12).The eusocial insects offer abundant niche space for bacterial symbionts (5, 13-16) because many have peculiar diets and practice liquid food transfer (trophallaxis), which facilitates symbiont transmission within colonies. Higher termites replaced their ancestral protist gut communities by bacterial microbiota (17), while other early studies identified Blochmannia gut symbionts in carpenter ants (18, 19) and a community of gut-pouch symbionts in Tetraponera ants (20, 21). More recently, comparative studies have st...
The social Hymenoptera have distinct larval and adult stages separated by metamorphosis, which implies striking remodeling of external and internal body structures during the pupal stage. This imposes challenges to gut symbionts as existing cultures are lost and may or may not need to be replaced. To elucidate the extent to which metamorphosis interrupts associations between bacteria and hosts, we analyzed changes in gut microbiota during development and traced the transmission routes of dominant symbionts from the egg to adult stage in the leaf-cutting ants Acromyrmex echinatior and Atta cephalotes, which are both important functional herbivores in the New World tropics. Bacterial density remained similar across the developmental stages of Acromyrmex, but Atta brood had very low bacterial prevalences suggesting that bacterial gut symbionts are not actively maintained. We found that Wolbachia was the absolute dominant bacterial species across developmental stages in Acromyrmex and we confirmed that Atta lacks Wolbachia also in the immature stages, and had mostly Mollicutes bacteria in the adult worker guts. Wolbachia in Acromyrmex appeared to be transovarially transmitted similar to transmission in solitary insects. In contrast, Mollicutes were socially transmitted from old workers to newly emerged callows. We found that larval and pupal guts of both ant species contained Pseudomonas and Enterobacter bacteria that are also found in fungus gardens, but hardly or not in adult workers, suggesting they are beneficial only for larval growth and development. Our results reveal that transmission pathways for bacterial symbionts may be very different both between developmental stages and between sister genera and that identifying the mechanisms of bacterial acquisition and loss will be important to clarify their putative mutualistic functions.
Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.
SummarySocial insects owe their ecological success to the division of labour between castes, but associations between microbial community compositions and castes with different tasks and diets have not been extensively explored. Fungus‐growing termites associate with fungi to degrade plant material, complemented by diverse gut microbial communities. Here, we explore whether division of labour and accompanying dietary differences between fungus‐growing termite castes are linked to gut bacterial community structure. Using amplicon sequencing, we characterize community compositions in sterile (worker and soldier) and reproductive (queen and king) termites and combine this with gut enzyme activities and microscopy to hypothesise sterile caste‐specific microbiota roles. Gut bacterial communities are structured primarily according to termite caste and genus and, in contrast to the observed rich and diverse sterile caste microbiotas, royal pair guts are dominated by few bacterial taxa, potentially reflecting their specialized uniform diet and unique lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.