Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with its incidence rising steeply. Immunosuppression is a well-established risk factor for cSCC, and this risk factor highlights the critical role of the immune system in regulating cSCC development and progression. Further highlighting the nature of cSCC as an immunological disorder, substantial evidence demonstrates a tight association between cSCC risk and age-related immunosenescence. Besides the proven efficacy of immune checkpoint blockade therapy for advanced cSCC, novel immunotherapy that targets cSCC precursor lesions has shown efficacy for cSCC prevention. Furthermore, the appreciation of the interplay between keratinocytes, commensal papillomaviruses, and the immune system has revealed the possibility for the development of a preventive cSCC vaccine. cSCC shares fundamental aspects of its origin and pathogenesis with mucosal SCCs. Therefore, advances in the field of cSCC immunoprevention will inform our approach to the management of mucosal SCCs and potentially other epithelial cancers.
Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cell (CD4 CTL) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTL eliminated HCMV- gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTL from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which can be directly eliminated by CD4 CTL through the recognition of the HCMV-gB antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.