The molecular mass of trout myoglobin was 16017 Da based on electrospray ionization mass spectrometry. A Root effect (low oxygen affinity at pH 6.3) was determined in trout hemoglobin but not myoglobin. At pH 6.3, myoglobin autoxidized more rapidly (3.5-fold) as compared to anodic hemoglobin. Anodic hemoglobin was a better catalyst of lipid oxidation in washed cod muscle as compared to myoglobin at pH 6.3. This suggested that some process other than met heme protein formation was the rate-limiting step in lipid oxidation processes. Heme loss rates were determined using the apomyoglobin mutant H64Y prepared from sperm whale. Anodic hemoglobin released its heme group much more rapidly than myoglobin. In comparisons of anodic and cathodic hemoglobins, heme loss rate better predicted the onset of lipid oxidation than autoxidation rate. These studies collectively suggest that heme dissociation has a primary role in the ability of different heme proteins to promote lipid oxidation processes.
Beef hemoglobin (Hb) had lower levels of deoxyHb and autoxidized much slower as compared to trout Hb at pH 6.3. Chicken Hb autoxidized at a rate intermediate between beef and trout Hb. In the presence of hydrogen peroxide, metHb formed rapidly from trout Hb whereas beef Hb was essentially nonreactive with hydrogen peroxide. The autoxidation rate of perch Hb was more rapid than trout Hb despite the low deoxyHb content of perch Hb. Perch Hb was a better catalyst of lipid oxidation than trout Hb when added to washed cod muscle based on formation of lipid hydroperoxides and thiobarbituric acid reactive substances. These studies indicate that autoxidation rate does not always increase with increasing deoxyHb content. The role of heme crevice volume in heme protein autoxidation is discussed. Among other factors, these studies suggest that rates of lipid oxidation in various muscle foods may depend on the relative ability of hemoglobins from different animal species to promote lipid oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.