Deletions involving regions of chromosome 10 occur in the vast majority (> 90%) of human glioblastoma multiformes. A region at chromosome 10q23-24 was implicated to contain a tumour suppressor gene and the identification of homozygous deletions in four glioma cell lines further refined the location. We have identified a gene, designated MMAC1, that spans these deletions and encodes a widely expressed 5.5-kb mRNA. The predicted MMAC1 protein contains sequence motifs with significant homology to the catalytic domain of protein phosphatases and to the cytoskeletal proteins, tensin and auxilin. MMAC1 coding-region mutations were observed in a number of glioma, prostate, kidney and breast carcinoma cell lines or tumour specimens. Our results identify a strong candidate tumour suppressor gene at chromosome 10q23.3, whose loss of function appears to be associated with the oncogenesis of multiple human cancers.
The kinetochore is a specialized structure at the centromere of eukaryotic chromosomes that attaches chromosomes to the mitotic spindle. Recently, several lines of evidence have suggested that kinetochores may have more than a passive role in the movement of chromosomes during mitosis and meiosis. Kinetochores seem to attract and 'capture' microtubules that grow from the spindle poles and microtubules may lengthen or shorten by the addition or subtraction of tubulin subunits at their kinetochore-associated ends. An attractive hypothesis is that kinetochores function as 'self-contained engines running on a microtubule track'. Here, we show that kinetochores can be experimentally detached from chromosomes when caffeine is applied to Chinese hamster ovary cells that are arrested in the G1/S phase of the cell cycle. The detached kinetochore fragments can still interact with spindle microtubules and complete all the mitotic movements in the absence of other chromosomal components. As these cells enter mitosis before DNA synthesis is completed, chromosome replication need not be a prerequisite for the pairing, alignment and segregation of kinetochores.
A number of cytogenetic and molecular analyses have revealed very frequent and extensive losses of regions of chromosome 10 in human glioblastomas. Our recent studies have demonstrated that the transfer of a chromosome 10 into human glioblastoma cells resulted in suppression of their transformed and tumorigenic phenotype. To localize the suppressive region further, we isolated and characterized certain hybrid cells that had undergone chromosomal rearrangements to yield hybrid cells retaining only various regions of the inserted chromosome 10. One series of subclones showed the loss of the majority of the long arm of chromosome 10 (10q21-10qter) and regained the ability to grow under anchorage-independent conditions, but the cells still failed to exhibit significant tumorigenicity in nude mice. Another set of subclones exhibited major deletions of large segments of the long arm of chromosome 10 (10q21-q23; 10q26-qter), yet retained certain distal alleles associated with 10q24 to 10q26. These subclones were identical in their biological characteristics to the hybrids containing an intact chromosome 10, exhibiting no growth in soft agarose or in nude mice. These results implicate the presence of two independent phenotypically suppressive regions on chromosome 10 (10pter-q11 and 10q24-q26) that are involved in glioma progression.
Genomic deletions involving chromosome 4 have recently been implicated in several human cancers. To identify and characterize genetic events associated with the development of head and neck squamous cell carinoma (HNSCC), a ®ne mapping of allelic losses associated with chromosome 4 was performed on DNA isolated from 27 matched primary tumor specimens and normal tissues. Loss of heterozygosity (LOH) of at least one chromosome 4 polymorphic allele was seen in the majority of tumors (92%). Allelic deletions were con®ned to short arm loci in four tumors and to the long arm loci in 12 tumors, suggesting the presence of two regions of common deletion. One region of frequent deletion was centered at D4S405 on 4p and included the loci D4S1546 to D4S428 in *41% of the tumors. The common region of deletion on 4q was more complex and extended from D4S1571 to D4S1573. Frequent genetic alterations were observed within this region (4q25) and one marker, D4S407, exhibited a high frequency of LOH (475%). These results indicate that alterations of chromosome 4 regions are associated with HNSCC tumorigenesis and further localizes the regions that may harbor tumor suppressor genes.
Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.