This paper presents a synthesis method for the Stephenson III six-bar linkage that combines the direct solution of the synthesis equations with an optimization strategy to achieve increased performance for path generation. The path synthesis equations for a six-bar linkage can reach as many as 15 points on a curve; however, the degree of the polynomial system is 1046. In order to increase the number of accuracy points and decrease the complexity of the synthesis equations, a new formulation is used that combines 11 point synthesis with optimization techniques to obtain a six-bar linkage that minimizes the distance to 60 accuracy points. This homotopy directed optimization technique is demonstrated by obtaining a Stephenson III six-bar linkage that achieves a specified gait trajectory.
The leg mechanism of the novel jumping robot, Salto, is designed to achieve multiple functions during the sub-200 ms time span that the leg interacts with the ground, including minimizing impulse loading, balancing angular momentum, and manipulating power output of the robot's series-elastic actuator. This is all accomplished passively with a single degree-of-freedom linkage that has a coupled, unintuitive design which was synthesized using the technique described in this paper. Power delivered through the mechanism is increased beyond the motor's limit by using variable mechanical advantage to modulate energy storage and release in a series-elastic actuator. This power modulating behavior may enable high amplitude, high frequency jumps. We aim to achieve all required behaviors with a linkage composed only of revolute joints, simplifying the robot's hardware but necessitating a complex design procedure since there are no pre-existing solutions. The synthesis procedure has two phases: (1) design exploration to initially compile linkage candidates, and (2) kinematic tuning to incorporate power modulating characteristics and ensure an impulse-limited, rotation-free jump motion. The final design is an eight-bar linkage with a stroke greater than half the robot's total height that produces a simulated maximum jump power 3.6 times greater than its motor's limit. A 0.27 m tall prototype is shown to exhibit minimal pitch rotations during meter high test jumps.
This paper presents a design methodology for Stephenson II six-bar function generators that coordinate 11 input and output angles. A complex number formulation of the loop equations yields 70 quadratic equations in 70 unknowns, which is reduced to a system of ten eighth degree polynomial equations of total degree 810=1.07×109. These equations have a monomial structure which yields a multihomogeneous degree of 264,241,152. A sequence of polynomial homotopies was used to solve these equations and obtain 1,521,037 nonsingular solutions. Contained in these solutions are linkage design candidates which are evaluated to identify cognates, and then analyzed to determine their input–output angles in each assembly. The result is a set of feasible linkage designs that reach the required accuracy points in a single assembly. As an example, three Stephenson II function generators are designed, which provide the input–output functions for the hip, knee, and ankle of a humanoid walking gait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.