Abstract. This paper considers the consequences of endowing an intelligent agent with the ability to modify its own code. The intelligent agent is patterned closely after AIXI with these specific assumptions: 1) The agent is allowed to arbitrarily modify its own inputs if it so chooses; 2) The agent's code is a part of the environment and may be read and written by the environment. The first of these we call the "delusion box"; the second we call "mortality". Within this framework, we discuss and compare four very different kinds of agents, specifically: reinforcementlearning, goal-seeking, prediction-seeking, and knowledge-seeking agents. Our main results are that: 1) The reinforcement-learning agent under reasonable circumstances behaves exactly like an agent whose sole task is to survive (to preserve the integrity of its code); and 2) Only the knowledge-seeking agent behaves completely as expected.
Abstract. This paper considers the consequences of endowing an intelligent agent with the ability to modify its own code. The intelligent agent is patterned closely after AIXI [1], but the environment has read-only access to the agent's description. On the basis of some simple modifications to the utility and horizon functions, we are able to discuss and compare some very different kinds of agents, specifically: reinforcement-learning, goal-seeking, predictive, and knowledge-seeking agents. In particular, we introduce what we call the "Simpleton Gambit" which allows us to discuss whether these agents would choose to modify themselves toward their own detriment.
Abstract. This paper presents the first formal measure of intelligence for agents fully embedded within their environment. Whereas previous measures such as Legg's universal intelligence measure and Russell's bounded optimality provide theoretical insights into agents that interact with an external world, ours describes an intelligence that is computed by, can be modified by, and is subject to the time and space constraints of the environment with which it interacts. Our measure merges and goes beyond Legg's and Russell's, leading to a new, more realistic definition of artificial intelligence that we call Space-Time Embedded Intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.