Background: Senescent cells, which can release factors that cause inflammation and dysfunction, the senescenceassociated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. Methods: In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68•7 ± 3•1 years old; 2 female; BMI:33•9 ± 2•3 kg/m 2 ; eGFR:27•0 ± 2•1 mL/ min/1•73m 2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. Findings: D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16 INK4A-and p21 CIP1-expressing cells, cells with senescence-associated β-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16 INK4A+ and p21 CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and −12. Interpretation: "Hit-and-run" treatment with senolytics, which in the case of D + Q have elimination half-lives b11 h, significantly decreases senescent cell burden in humans.
BackgroundSenescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of damaged DNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related diseases using genetic and pharmacologic approaches. We previously demonstrated that the combination of dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including frailty, osteoporosis and cardiovascular disease. The goal of this study was to identify flavonoids with more potent senolytic activity.MethodsA panel of flavonoid polyphenols was screened for senolytic activity using senescent murine and human fibroblasts, driven by oxidative and genotoxic stress, respectively. The top senotherapeutic flavonoid was tested in mice modeling a progeroid syndrome carrying a p16INK4a-luciferase reporter and aged wild-type mice to determine the effects of fisetin on senescence markers, age-related histopathology, disease markers, health span and lifespan. Human adipose tissue explants were used to determine if results translated.FindingsOf the 10 flavonoids tested, fisetin was the most potent senolytic. Acute or intermittent treatment of progeroid and old mice with fisetin reduced senescence markers in multiple tissues, consistent with a hit-and-run senolytic mechanism. Fisetin reduced senescence in a subset of cells in murine and human adipose tissue, demonstrating cell-type specificity. Administration of fisetin to wild-type mice late in life restored tissue homeostasis, reduced age-related pathology, and extended median and maximum lifespan.InterpretationThe natural product fisetin has senotherapeutic activity in mice and in human tissues. Late life intervention was sufficient to yield a potent health benefit. These characteristics suggest the feasibility to translation to human clinical studies.FundNIH grants P01 AG043376 (PDR, LJN), U19 AG056278 (PDR, LJN, WLL), R24 AG047115 (WLL), R37 AG013925 (JLK), R21 AG047984 (JLK), P30 DK050456 (Adipocyte Subcore, JLK), a Glenn Foundation/ (AFAR) BIG Award (JLK), Glenn/AFAR (LJN, CEB), the Ted Nash Long Life and Noaber Foundations (JLK), the Connor Group (JLK), Robert J. and Theresa W. Ryan (JLK), and a Minnesota Partnership Grant (AMAY-UMN#99)-P004610401–1 (JLK, EAA).
Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-XL inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.
Xanthophylls have a crucial role in the structure and function of the light harvesting complexes of photosystem II (LHCII) in plants. The binding of xanthophylls to LHCII has been investigated, particularly with respect to the xanthophyll cycle carotenoids violaxanthin and zeaxanthin. It was found that most of the violaxanthin pool was loosely bound to the major complex and could be removed by mild detergent treatment. Gentle solubilization of photosystem II particles and thylakoids allowed the isolation of complexes, including a newly described oligomeric preparation, enriched in trimers, that retained all of the in vivo violaxanthin pool. It was estimated that each LHCII monomer can bind at least one violaxanthin. The extent to which different pigments can be removed from LHCII indicated that the relative strength of binding was chlorophyll b > neoxanthin > chlorophyll a > lutein > zeaxanthin > violaxanthin. The xanthophyll binding sites are of two types: internal sites binding lutein and peripheral sites binding neoxanthin and violaxanthin. In CP29, a minor LHCII, both a lutein site and the neoxanthin site can be occupied by violaxanthin. Upon activation of the violaxanthin de-epoxidase, the highest de-epoxidation state was found for the main LHCII component and the lowest for CP29, suggesting that only violaxanthin loosely bound to LHCII is available for de-epoxidation.Xanthophylls are a class of carotenoids associated with the light harvesting complexes of plant chloroplast membranes (1). In most plants, there are three major xanthophylls, namely lutein, neoxanthin, and violaxanthin, the last of which can be reversibly de-epoxidized to antheraxanthin and zeaxanthin via the xanthophyll cycle (2). The reason for this diversity in xanthophyll composition is not entirely clear, although the conservation of xanthophyll composition across a range of plant species (3-5) indicates a specific role for each one. Although xanthophylls are bound to both LHCII 1 and LHCI, the nature of the binding has not been determined, and there are significant differences in the values reported for the numbers of pigments bound to particular complexes (6 -11). In the structural model for the major LHCII component, LHCIIb, there are two carotenoid molecules that are presumed to be the two luteins that have been shown to be bound by this complex (12). No other carotenoids were detected in this crystallographic study, despite the fact that there are either one or two other carotenoids present. For the other LHCII components, CP29, CP26, and CP24, there is even less certainty, with estimates of the number of bound carotenoids differing significantly (see reviews in Refs. 9 and 11).In the case of the xanthophyll cycle carotenoids, establishing the stoichiometry of binding is of particular importance because this cycle plays a major role in controlling the efficiency of light harvesting (5, 13, 14): in light-limiting conditions, maximum efficiency of light harvesting is associated with the presence of violaxanthin, whereas de-epoxidation ...
Dissipation of excess excitation energy within the photosystem II light-harvesting antenna (LHCII) by non-photochemical quenching (NPQ) is an important photoprotective process in plants. An update to a hypothesis for the mechanism of NPQ [FEBS Letters 292, 1991] is presented. The impact of recent advances in understanding the structure, organisation and photophysics of LHCII is assessed. We show possible locations of the predicted regulatory and quenching pigment-binding sites in the structural model of the major LHCII. We suggest that NPQ is a highly regulated concerted response of the organised thylakoid macrostructure, which can include different mechanisms and sites at different times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.