An increasing number of firms introduce service robots, such as physical robots and virtual chatbots, to provide services to customers. While some firms use robots that resemble human beings by looking and acting humanlike to increase customers’ use intention of this technology, others employ machinelike robots to avoid uncanny valley effects, assuming that very humanlike robots may induce feelings of eeriness. There is no consensus in the service literature regarding whether customers’ anthropomorphism of robots facilitates or constrains their use intention. The present meta-analysis synthesizes data from 11,053 individuals interacting with service robots reported in 108 independent samples. The study synthesizes previous research to clarify this issue and enhance understanding of the construct. We develop a comprehensive model to investigate relationships between anthropomorphism and its antecedents and consequences. Customer traits and predispositions (e.g., computer anxiety), sociodemographics (e.g., gender), and robot design features (e.g., physical, nonphysical) are identified as triggers of anthropomorphism. Robot characteristics (e.g., intelligence) and functional characteristics (e.g., usefulness) are identified as important mediators, although relational characteristics (e.g., rapport) receive less support as mediators. The findings clarify contextual circumstances in which anthropomorphism impacts customer intention to use a robot. The moderator analysis indicates that the impact depends on robot type (i.e., robot gender) and service type (i.e., possession-processing service, mental stimulus-processing service). Based on these findings, we develop a comprehensive agenda for future research on service robots in marketing.
Impulse buying by consumers has received considerable attention in consumer research. The phenomenon is interesting because it is not only prompted by a variety of internal psychological factors but also influenced by external, market-related stimuli. The meta-analysis reported in this article integrates findings from 231 samples and more than 75,000 consumers to extend understanding of the relationship between impulse buying and its determinants, associated with several internal and external factors. Traits (e.g., sensation-seeking, impulse buying tendency), motives (e.g., utilitarian, hedonic), consumer resources (e.g., time, money), and marketing stimuli emerge as key triggers of impulse buying. Consumers' self-control and mood states mediate and explain the affective and cognitive psychological processes associated with impulse buying. By establishing these pathways and processes, this study helps clarify factors contributing to impulse buying and the role of factors in resisting such impulses. It also explains the inconsistent findings in prior research by highlighting the context-dependency of various determinants. Specifically, the results of a moderator analysis indicate that the impacts of many determinants depend on the consumption context (e.g., product's identity expression, price level in the industry). Keywords Meta-analysis. Impulse buying. Impulsivity. Self-control. Mood states. Marketing stimuli Consumers spend $5,400 per year on average on impulse purchases of food, clothing, household items, and shoes (O'Brien 2018). Thus, there is considerable need to investigate consumer impulse buying, defined as episodes in which "a consumer experiences a sudden, often powerful and persistent urge to buy something immediately" (Rook 1987, p. 191). Products purchased impulsively often get assigned to a distinct category in marketing texts, yet decades of research reveal that impulsive purchases actually are not restricted to any specific product category. As Rook and Hoch (1985, p. 23) assert, "it is the individuals, not the products, who experience the impulse to consume." Academic research that explores the various triggers of impulse buying consists of three main schools of thought. First, some scholars argue that individual traits lead consumers to engage in impulse buying (e.g., Verplanken and Herabadi 2001). For example, people who are impulsive are more likely to engage in impulse buying (Rook and Hoch 1985), whereas those who do not display this trait may be less likely to engage in spontaneous behaviors while shopping. Among the psychological factors that might evoke impulse buying, researchers have explored the traits of sensation seeking, impulsivity, and representations of self-identity. Second, both motives and resources might drive impulse buying. Researchers have identified the effects of two types of motives (hedonic and utilitarian), as well as subjective norms, and argued that mere impulsiveness is often not strong enough to trigger impulse buying. Instead, the availability of resources cou...
Using survey data from 358 online customers, the study finds that the e-service quality construct conforms to the structure of a third-order factor model that links online service quality perceptions to distinct and actionable dimensions, including (1) website design, (2) fulfilment, (3) customer service, and (4) security/privacy. Each dimension is found to consist of several attributes that define the basis of e-service quality perceptions. A comprehensive specification of the construct, which includes attributes not covered in existing scales, is developed. The study contrasts a formative model consisting of 4 dimensions and 16 attributes against a reflective conceptualization. The results of this comparison indicate that studies using an incorrectly specified model overestimate the importance of certain e-service quality attributes. Global fit criteria are also found to support the detection of measurement misspecification. Meta-analytic data from 31,264 online customers are used to show that the developed measurement predicts customer behavior better than widely used scales, such as WebQual and E-S-Qual. The results show that the new measurement enables managers to assess e-service quality more accurately and predict customer behavior more reliably.
Despite their generally increasing use, the adoption of mobile shopping applications often differs across purchase contexts. In order to advance our understanding of smartphonebased mobile shopping acceptance, this study integrates and extends existing approaches from technology acceptance literature by examining two previously underexplored aspects. Firstly, the study examines the impact of different mobile and personal benefits (instant connectivity, contextual value and hedonic motivation), customer characteristics (habit) and risk facets (financial, performance, and security risk) as antecedents of mobile shopping acceptance. Secondly, it is assumed that several acceptance drivers differ in relevance subject to the perception of three mobile shopping characteristics (location sensitivity, time criticality, and extent of control), while other drivers are assumed to matter independent of the context. Based on a dataset of 410 smartphone shoppers, empirical results demonstrate that several acceptance predictors are associated with ease of use and usefulness, which in turn affect intentional and behavioral outcomes. Furthermore, the extent to which risks and benefits impact ease of use and usefulness is influenced by the three contextual characteristics. From a managerial perspective, results show which factors to consider in the development of mobile shopping applications and in which different application contexts they matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.