BackgroundRT-qPCR is a sensitive and increasingly used method for gene expression quantification. To normalize RT-qPCR measurements between samples, most laboratories use endogenous reference genes as internal controls. There is increasing evidence, however, that the expression of commonly used reference genes can vary significantly in certain contexts.ResultsUsing the Genevestigator database of normalized and well-annotated microarray experiments, we describe the expression stability characteristics of the transciptomes of several organisms. The results show that a) no genes are universally stable, b) most commonly used reference genes yield very high transcript abundances as compared to the entire transcriptome, and c) for each biological context a subset of stable genes exists that has smaller variance than commonly used reference genes or genes that were selected for their stability across all conditions.ConclusionWe therefore propose the normalization of RT-qPCR data using reference genes that are specifically chosen for the conditions under study. RefGenes is a community tool developed for that purpose. Validation RT-qPCR experiments across several organisms showed that the candidates proposed by RefGenes generally outperformed commonly used reference genes. RefGenes is available within Genevestigator at http://www.genevestigator.com.
Reference datasets are often used to compare, interpret or validate experimental data and analytical methods. In the field of gene expression, several reference datasets have been published. Typically, they consist of individual baseline or spike-in experiments carried out in a single laboratory and representing a particular set of conditions.Here, we describe a new type of standardized datasets representative for the spatial and temporal dimensions of gene expression. They result from integrating expression data from a large number of globally normalized and quality controlled public experiments. Expression data is aggregated by anatomical part or stage of development to yield a representative transcriptome for each category. For example, we created a genome-wide expression dataset representing the FDA tissue panel across 35 tissue types. The proposed datasets were created for human and several model organisms and are publicly available at http://www.expressiondata.org.
Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs.
BackgroundIt is generally accepted that controlled vocabularies are necessary to systematically integrate data from various sources. During the last decade, several plant ontologies have been developed, some of which are community specific or were developed for a particular purpose. In most cases, the practical application of these ontologies has been limited to systematically storing experimental data. Due to technical constraints, complex data structures and term redundancies, it has been difficult to apply them directly into analysis tools.ResultsHere, we describe a simplified and cross-species compatible set of controlled vocabularies for plant anatomy, focussing mainly on monocotypledonous and dicotyledonous crop and model plants. Their content was designed primarily for their direct use in graphical visualization tools. Specifically, we created annotation vocabularies that can be understood by non-specialists, are minimally redundant, simply structured, have low tree depth, and we tested them practically in the frame of Genevestigator.ConclusionsThe application of the proposed ontologies enabled the aggregation of data from hundreds of experiments to visualize gene expression across tissue types. It also facilitated the comparison of expression across species. The described controlled vocabularies are maintained by a dedicated curation team and are available upon request.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.