Horizontal transfer (HT) is central to the evolution of prokaryotic species. Selfish and mobile genetic elements, such as phages, plasmids, and transposons, are the primary vehicles for HT among prokaryotes. In multicellular eukaryotes, the prevalence and evolutionary significance of HT remain unclear. Here, we identified a set of DNA transposon families dubbed SPACE INVADERS (or SPIN) whose consensus sequences are Ϸ96% identical over their entire length (2.9 kb) in the genomes of murine rodents (rat/mouse), bushbaby (prosimian primate), little brown bat (laurasiatherian), tenrec (afrotherian), opossum (marsupial), and two non-mammalian tetrapods (anole lizard and African clawed frog). In contrast, SPIN elements were undetectable in other species represented in the sequence databases, including 19 other mammals with draft whole-genome assemblies. This patchy distribution, coupled with the extreme level of SPIN identity in widely divergent tetrapods and the overall lack of selective constraint acting on these elements, is incompatible with vertical inheritance, but strongly indicative of multiple horizontal introductions. We show that these germline infiltrations likely occurred around the same evolutionary time (15-46 mya) and spawned some of the largest bursts of DNA transposon activity ever recorded in any species lineage (nearly 100,000 SPIN copies per haploid genome in tenrec). The process also led to the emergence of a new gene in the murine lineage derived from a SPIN transposase. In summary, HT of DNA transposons has contributed significantly to shaping and diversifying the genomes of multiple mammalian and tetrapod species. genome evolution ͉ lateral gene transfer ͉ transposable elements ͉ transposase L ateral or horizontal transfer (HT), the transfer of genetic material between reproductively isolated species, is a frequent occurrence in prokaryotes with selfish and mobile genetic elements such as phages, plasmids, and transposons, serving as the primary vehicles for HT of prokaryotic genes (1). In contrast, reports of HT are scarce in eukaryotes and most cases of nuclear acquisition implicate transfers from prokaryotes or endosymbionts (2-6). The best documented instances of HT between the nuclear genomes of multicellular eukaryotes involve mobile genetic elements, and in particular class 2 or DNA mediated transposons (7,8). Thus far, conspicuous cases of HT of DNA transposons have been detected among insects (8-12), fish (13) and, in one example, between plants (14). Germline invasions by retroviruses have been documented for several mammals (15-18), and there is mounting evidence supporting the horizontal introduction of a snake retroposon in ruminants (19,20). However, to our knowledge, there has been no substantiated report of HT of DNA transposons in mammals. Here, we present unequivocal evidence for the repeated HT of a DNA transposon family named SPACE INVADERS in 7 tetrapod lineages, including 5 mammalian orders. ResultsDiscovery of SPIN Transposons. While surveying DNA transposons in the draft...
Accessing a specific, predefined location identified in medical images is a common interventional task for biopsies and drug or therapy delivery. While conventional surgical needles provide little steerability, concentric tube continuum devices enable steering through curved trajectories. These devices are usually developed as robotic systems. However, manual actuation of concentric tube devices is particularly useful for initial transfer into the clinic since the Food and Drug Administration (FDA) and Institutional Review Board (IRB) approval process of manually operated devices is simple compared to their motorized counterparts. In this paper, we present a manual actuation device for the deployment of steerable cannulas. The design focuses on compactness, modularity, usability, and sterilizability. Further, the kinematic mapping from joint space to Cartesian space is detailed for an example concentric tube device. Assessment of the device’s accuracy was performed in free space, as well as in an image-guided surgery setting, using tracked 2D ultrasound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.