Wireless sensor networks (WSN) are used by engineers to record the behavior of structures. The sensors provide data to be used by engineers to make informed choices and prioritize decisions concerning maintenance procedures, required repairs, and potential infrastructure replacements. However, reliable data collection in the field remains a challenge. The information obtained by the sensors in the field frequently needs further processing, either at the decision-making headquarters or in the office. Although WSN allows data collection and analysis, there is often a gap between WSN data analysis results and the way decisions are made in industry. The industry depends on inspectors’ decisions, so it is of vital necessity to improve the inspectors’ access in the field to data collected from sensors. This paper presents the results of an experiment that shows the way Augmented Reality (AR) may improve the availability of WSN data to inspectors. AR is a tool which overlays the known attributes of an object with the corresponding position on the headset screen. In this way, it allows the integration of reality with a virtual representation provided by a computer in real time. These additional synthetic overlays supply data that may be unavailable otherwise, but it may also display additional contextual information. The experiment reported in this paper involves the application of a smart Strain Gauge Platform, which automatically measures strain for different applications, using a wireless sensor. In this experiment, an AR headset was used to improve actionable data visualization. The results of the reported experiment indicate that since the AR headset makes it possible to visualize information collected from the sensors in a graphic form in real time, it enables automatic, effective, reliable, and instant communication from a smart low-cost sensor strain gauge to a database. Moreover, it allows inspectors to observe augmented data and compare it across time and space, which then leads to appropriate prioritization of infrastructure management decisions based on accurate observations.
Decaying infrastructure maintenance cost allocation depends heavily on accurate and safe inspection in the field. New tools to conduct inspections can assist in prioritizing investments in maintenance and repairs. The industrial revolution termed as “Industry 4.0” is based on the intelligence of machines working with humans in a collaborative workspace. Contrarily, infrastructure management has relied on the human for making day-to-day decisions. New emerging technologies can assist during infrastructure inspections, to quantify structural condition with more objective data. However, today’s owners agree in trusting the inspector’s decision in the field over data collected with sensors. If data collected in the field is accessible during the inspections, the inspector decisions can be improved with sensors. New research opportunities in the human–infrastructure interface would allow researchers to improve the human awareness of their surrounding environment during inspections. This article studies the role of Augmented Reality (AR) technology as a tool to increase human awareness of infrastructure in their inspection work. The domains of interest of this research include both infrastructure inspections (emphasis on the collection of data of structures to inform management decisions) and emergency management (focus on the data collection of the environment to inform human actions). This article describes the use of a head-mounted device to access real-time data and information during their field inspection. The authors leverage the use of low-cost smart sensors and QR code scanners integrated with Augmented Reality applications for augmented human interface with the physical environment. This article presents a novel interface architecture for developing Augmented Reality–enabled inspection to assist the inspector’s workflow in conducting infrastructure inspection works with two new applications and summarizes the results from various experiments. The main contributions of this work to computer-aided community are enabling inspectors to visualize data files from database and real-time data access using an Augmented Reality environment.
Currently, over half of the U.S.’s railroad bridges are more than 100 years old. Railroad managers ensure that the proper Maintenance, Repair, and Replacement (MRR) of rail infrastructure is prioritized to safely adapt to the increasing traffic demand. By 2035, the demand for U.S. railroad transportation will increase by 88%, which indicates that considerable expenditure is necessary to upgrade rail infrastructure. Railroad bridge managers need to use their limited funds for bridge MRR to make informed decisions about safety. Consequently, they require economical and reliable methods to receive objective data about bridge displacements under service loads. Current methods of measuring displacements are often expensive. Wired sensors, such as Linear Variable Differential Transformers (LVDTs), require time-consuming installation and involve high labor and maintenance costs. Wireless sensors (WS) are easier to install and maintain but are in general technologically complex and costly. This paper summarizes the development and validation of LEWIS2, the second version of the real-time, low-cost, efficient wireless intelligent sensor (LEWIS) for measuring and autonomously storing reference-free total transverse displacements. The new features of LEWIS2 include portability, accuracy, cost-effectiveness, and readiness for field application. This research evaluates the effectiveness of LEWIS2 for measuring displacements through a series of laboratory experiments. The experiments demonstrate that LEWIS2 can accurately estimate reference-free total displacements, with a maximum error of only 11% in comparison with the LVDT, while it costs less than 5% of the average price of commercial wireless sensors.
This work presents a novel, comprehensive framework that leverages emerging augmented reality headset technology to enable smart nuclear industrial infrastructure that a human can easily interact with to improve their performance in terms of safety, security, and productivity. Nuclear industrial operations require some of the most complicated infrastructure that must be managed today. Nuclear infrastructure and their associated industrial operations typically features stringent requirements associated with seismic, personnel management (e.g., access control, equipment access), safety (e.g., radiation, criticality, mechanical, electrical, spark, and chemical hazards), security (cyber/physical), and sometimes international treaties for nuclear non-proliferation. Furthermore, a wide variety of manufacturing and maintenance operations take place within these facilities further complicating their management. Nuclear facilities require very thorough and stringent documentation of the operations occurring within these facilities as well as maintaining a tight chain-of-custody for the materials being stored within the facility. The emergence of augmented reality and a variety of Internet of Things (IoT) devices offers a possible solution to help mitigate these challenges. This work provides a demonstration of a prototype smart nuclear infrastructure system that leverages augmented reality to illustrate the advantages of this system. It will also present example augmented reality tools that can be leveraged to create the next generation of smart nuclear infrastructure. The discussion will layout future directions of research for this class of work.
Infrastructure is the backbone of the US economy and a necessary input to every economic output [1]. The cost of infrastructure maintenance and management demands significant expense for government and private companies. Infrastructure owners want to increase efficiency and improve their bottom-line from existing infrastructure rather than building new ones [2]. One of the significant challenges for the engineering community has been adopting new technologies such as low-cost wireless smart sensors, augmented reality, Unmanned Aerial System (UAS)-based Structural Health Monitoring (SHM). To receive first-hand insight from infrastructure owners, industry professionals and researchers, a workshop entitled ‘Infrastructure, Maintenance and Management Using New Technology’ was conducted in Fort Worth, Texas. In this paper the findings from the workshop are discussed. Stakeholders highlighted safety of the bridge inspectors as the priority in the maintenance and management work. Based on the findings of this workshop it now clear that adopting new technologies leads to higher safety for field inspectors. Key aspects include importance of new technologies for obtaining actionable data for maintenance and management, owner’s perspectives on development of future technologies, current research progress and challenges faced by infrastructure industry in implementing new technologies are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.