Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCk/i, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCk/i signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCk/i signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCk/i expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCk/i significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCk/i-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFb and IL1b could activate PKCk/i signaling in TNBC cells and depletion of PKCk/i impairs NF-jB p65 (RelA) nuclear localization. We observed that cytokine-PKCk/i-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCk/i promote TNBC growth, invasion and metastasis. Thus, targeting PKCk/i signaling could be a therapeutic option for breast cancer, including the TNBC subtype.
Atypical Protein Kinase C zeta (PKCζ) forms Partitioning-defective (PAR) polarity complex for apico-basal distribution of membrane proteins essential to maintain normal cellular junctional complexes and tissue homeostasis. Consistently, tumor suppressive role of PKCζ has been established for multiple human cancers. However, recent studies also indicate pro-oncogenic function of PKCζ without firm understanding of detailed molecular mechanism. Here we report a possible mechanism of oncogenic PKCζ signaling in the context of breast cancer. We observed that depletion of PKCζ promotes epithelial morphology in mesenchymal-like MDA-MB-231 cells. The induction of epithelial morphology is associated with significant upregulation of adherens junction (AJ) protein E-cadherin and tight junction (TJ) protein Zonula Occludens-1 (ZO-1). Functionally, depletion of PKCζ significantly inhibits invasion and metastatic progression. Consistently, we observed higher expression and activation of PKCζ signaling in invasive and metastatic breast cancers compared to non-invasive diseases. Mechanistically, an oncogenic PKCζ– NFκB-p65 signaling node might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutively active form of NFκB-p65 (S536E-NFκB-p65) significantly rescues invasive potential of PKCζ-depleted breast cancer cells. Thus, our study discovered a PKCζ - NFκB-p65 signaling pathway might be involved to alter cellular junctional dynamics for breast cancer invasive progression.
Inflammatory cells enter the CNS and target myelin in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), a model of MS, and inflammation is thought to induce stress responses in the CNS. Protein kinase R (PKR) and eukaryotic initiation factor-2 alpha (eIF2 alpha) undergo phosphorylation in response to stress, and the phosphorylated forms of these proteins play a key role in regulating protein synthesis. The objective of this study was to investigate the expression profile of phospho-PKR and phospho-eIF2 alpha during the course of EAE in order to advance the understanding of the stress response in this disease. In control animals (no encephalitogen with no emulsion; no encephalitogen with emulsion) and in preclinical EAE animals, phospho-PKR immunoreactivity was present in oligodendrocytes and some neurons, whereas, in EAE animals with active disease there was widespread labeling of inflammatory cells, and these cells were present during the recovery period of EAE, albeit to a lesser extent. Double-labeling studies revealed that T cells and a few macrophages were phospho-PKR(+). Phospho-eIF2 alpha immunoreactivity was detected in some oligodendrocytes in hindbrain sections of control animals. In EAE animals with active disease, the number of labeled oligodendrocytes increased, and inflammatory T cells also were labeled. Insofar as phospho-PKR activates nuclear factor-kappa B, it may facilitate cytokines expression by T cells. Alternatively, phospho-PKR and phospho-eIF2 alpha may promote apoptosis as a way to regulate T-cell number in the CNS. The expression of phospho-eIF2 alpha in oligodendrocytes during EAE likely is involved with inhibition of protein translation, which is a protective mechanism used to promote cell survival in response to inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.