The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.
Surface temperatures are mechanistically linked to vegetation biophysical and physiological processes. Although remote sensing in the thermal infrared (TIR) domain can offer novel insights into the impacts of changing surface temperatures on vegetation, the transformative potential of remote sensing for plant ecology has not yet been realized. Remotely sensed surface temperatures can be used to derive stomatal behaviour and identify stressful environmental conditions in near‐real time. Plant species, traits and structural characteristics can be evaluated with high spectral resolution TIR emissivity. Beyond canopy scales, thermal remote sensing can enhance the inferences obtained from manipulative experiments and empirical evidence, providing unique insight into shifts in species ranges and phenology with changing climate conditions. Scaling leaf traits, canopy structure and regional patterns require an integrated understanding of both process and technology. Theory linking surface temperatures to vegetation dynamics is summarized from an energy balance perspective. We outline scaling considerations including the impacts of morphology on leaf energy balance, canopy structure influences on convective heat exchange and potential confounding impacts of non‐vegetated surfaces. Synthesis. We introduce a unifying framework to link leaf to globe through thermal remote sensing. Recent and emerging advances in sensors, data availability and analytics, together with synergies between TIR remote sensing and other data sources, present a timely opportunity for ecologists to advance our understanding of plant physiology, ecology and biogeography with thermal remote sensing.
Dryland ecosystems are dominant influences on both the trend and interannual variability of the terrestrial carbon sink. Despite their importance, dryland carbon dynamics are not well-characterized by current models. Here, we present DryFlux, an upscaled product built on a dense network of eddy covariance sites in the North American Southwest. To estimate dryland gross primary productivity, we fuse in situ fluxes with remote sensing and meteorological observations using machine learning. DryFlux explicitly accounts for intra-annual variation in water availability, and accurately predicts interannual and seasonal variability in carbon uptake. Applying DryFlux globally indicates existing products may underestimate impacts of large-scale climate patterns on the interannual variability of dryland carbon uptake. We anticipate DryFlux will be an improved benchmark for earth system models in drylands, and prompt a more sensitive accounting of water limitation on the carbon cycle.
The nitrogen content in plant foliar tissues (foliar N) regulates photosynthetic capacity and has a major impact on global biogeochemical cycles. Despite its importance, a robust, time, and cost-effective methodology to estimate variation in foliar N concentration across globally represented terrestrial systems does not exist.Although advances in remote sensing data have enabled landscape-scale foliar N predictions, improved accuracy is needed to effectively capture variation in foliar N across ecosystems. Airborne remote sensing imagery was analyzed in conjunction with ground-sampled foliar chemistry data (n = 692), provided by the NEON, to predict foliar N at sites across the United States covering a variety of plant communities and climate types. We developed indices from novel two-band combinations that predicted foliar N more accurately than existing indices (≈8% improvement across all sites and a 45% improvement in arid sites). Compared with two-band indices, we increased accuracy and decreased bias of foliar N predictions by using full-spectrum reflectance information and partial least squares regression (PLSR) models (R 2 = 0.638; root mean square error = 0.440). Significant wavelengths included red edge (720-765 nm), near infrared (NIR) reflectance at 1125 nm, and shortwave infrared (SWIR) reflectance at 2050 and 2095 nm, which are regions indicative of foliar traits such as growth type (e.g., leaf area index with NIR) and photosynthetic parameters (e.g., chlorophyll and Rubisco with red and SWIR reflectance, respectively). With the confluence of rapid increases in computing power, several forthcoming or recently launched hyperspectral missions, and the development of large-scale environmental research observatories worldwide, we have an exciting opportunity to estimate foliar N across larger spatial areas covering more diverse biomes than ever before. We anticipate that these predictions will prove to be invaluable in helping to constrain biogeochemical model uncertainties across a global range of terrestrial ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.