Summary Background In countries with declining numbers of confirmed cases of COVID-19, lockdown measures are gradually being lifted. However, even if most physical distancing measures are continued, other public health measures will be needed to control the epidemic. Contact tracing via conventional methods or mobile app technology is central to control strategies during de-escalation of physical distancing. We aimed to identify key factors for a contact tracing strategy to be successful. Methods We evaluated the impact of timeliness and completeness in various steps of a contact tracing strategy using a stochastic mathematical model with explicit time delays between time of infection and symptom onset, and between symptom onset, diagnosis by testing, and isolation (testing delay). The model also includes tracing of close contacts (eg, household members) and casual contacts, followed by testing regardless of symptoms and isolation if testing positive, with different tracing delays and coverages. We computed effective reproduction numbers of a contact tracing strategy ( R CTS ) for a population with physical distancing measures and various scenarios for isolation of index cases and tracing and quarantine of their contacts. Findings For the most optimistic scenario (testing and tracing delays of 0 days and tracing coverage of 100%), and assuming that around 40% of transmissions occur before symptom onset, the model predicts that the estimated effective reproduction number of 1·2 (with physical distancing only) will be reduced to 0·8 (95% CI 0·7–0·9) by adding contact tracing. The model also shows that a similar reduction can be achieved when testing and tracing coverage is reduced to 80% ( R CTS 0·8, 95% CI 0·7–1·0). A testing delay of more than 1 day requires the tracing delay to be at most 1 day or tracing coverage to be at least 80% to keep R CTS below 1. With a testing delay of 3 days or longer, even the most efficient strategy cannot reach R CTS values below 1. The effect of minimising tracing delay (eg, with app-based technology) declines with decreasing coverage of app use, but app-based tracing alone remains more effective than conventional tracing alone even with 20% coverage, reducing the reproduction number by 17·6% compared with 2·5%. The proportion of onward transmissions per index case that can be prevented depends on testing and tracing delays, and given a 0-day tracing delay, ranges from up to 79·9% with a 0-day testing delay to 41·8% with a 3-day testing delay and 4·9% with a 7-day testing delay. Interpretation In our model, minimising testing delay had the largest impact on reducing onward transmissions. Optimising testing and tracing coverage and minimising tracing delays, for instance with app-based technology, furth...
During the 1918 influenza pandemic, the U.S., unlike Europe, put considerable effort into public health interventions. There was also more geographic variation in the autumn wave of the pandemic in the U.S. compared with Europe, with some cities seeing only a single large peak in mortality and others seeing double-peaked epidemics. Here we examine whether differences in the public health measures adopted by different cities can explain the variation in epidemic patterns and overall mortality observed. We show that city-specific per-capita excess mortality in 1918 was significantly correlated with 1917 per-capita mortality, indicating some intrinsic variation in overall mortality, perhaps related to sociodemographic factors. In the subset of 23 cities for which we had partial data on the timing of interventions, an even stronger correlation was found between excess mortality and how early in the epidemic interventions were introduced. We then fitted an epidemic model to weekly mortality in 16 cities with nearly complete intervention-timing data and estimated the impact of interventions. The model reproduced the observed epidemic patterns well. In line with theoretical arguments, we found the time-limited interventions used reduced total mortality only moderately (perhaps 10 -30%), and that the impact was often very limited because of interventions being introduced too late and lifted too early. San Francisco, St. Louis, Milwaukee, and Kansas City had the most effective interventions, reducing transmission rates by up to 30 -50%. Our analysis also suggests that individuals reactively reduced their contact rates in response to high levels of mortality during the pandemic.epidemic model ͉ public health interventions T he Spanish influenza pandemic in 1918-1919 was exceptional in its lethality and the multiple distinct waves of the epidemic seen in many areas. Conservative estimates indicate that 50 million people died worldwide (1), with significant consequent social and economic disruption. However, observations in Europe and the U.S. differ considerably. In Europe, only one autumn wave was seen, whereas many U.S. cities saw two peaks in mortality incidence spaced by only a few weeks. Also, far greater variation in mortality was seen among U.S. cities than was seen, for instance, in the United Kingdom [see supporting information (SI) Appendix]. The origin of these differences is unclear. Here we examine the hypothesis that they result largely from the much wider use of public health measures in the U.S.A range of interventions was tried in the U.S. in 1918, including closure of schools and churches, banning of mass gatherings, mandated mask wearing, case isolation, and disinfection/hygiene measures. However, a challenge in undertaking this analysis is finding data on public health measures used in different U.S. cities and their precise timing. Here we examine the dynamics of the autumn 1918 waves in 16 cities for which we were able to collate reasonable data on the timing of public health interventions (see SI App...
Netherlands Organisation for Health Research and Development (ZonMw).
Variance between studies in a meta-analysis will exist. This heterogeneity may be of clinical, methodological or statistical origin. The last of these is quantified by the I(2) -statistic. We investigated, using simulated studies, the accuracy of I(2) in the assessment of heterogeneity and the effects of heterogeneity on the predictive value of meta-analyses. The relevance of quantifying I(2) was determined according to the likely presence of heterogeneity between studies (low, high, or unknown) and the calculated I(2) (low or high). The findings were illustrated by published meta-analyses of selective digestive decontamination and weaning protocols. As expected, I(2) increases and the likelihood of drawing correct inferences from a meta-analysis decreases with increasing heterogeneity. With low levels of heterogeneity, I(2) does not appear to be predictive of the accuracy of the meta-analysis result. With high levels of heterogeneity, even meta-analyses with low I(2) -values have low predictive values. Most commonly, the level of heterogeneity in a meta-analysis will be unknown. In these scenarios, I(2) determination may help to identify estimates with low predictive values (high I(2) ). In this situation, the results of a meta-analysis will be unreliable. With low I(2) -values and unknown levels of heterogeneity, predictive values of pooled estimates may range extensively, and findings should be interpreted with caution. In conclusion, quantifying statistical heterogeneity through I(2) -statistics is only helpful when the amount of clinical heterogeneity is unknown and I(2) is high. Objective methods to quantify the levels of clinical and methodological heterogeneity are urgently needed to allow reliable determination of the accuracy of meta-analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.