Internal die cooling during forging can reduce thermal loads, counteracting surface softening, plastic deformation and abrasive die wear. Additive manufacturing has great potential for producing complex geometries of the internal cooling channels. In this study, hybrid forging dies were developed combining conventional manufacturing processes and laser powder bed fusion (L-PBF) achieving conformal cooling channels. A characterisation of the used hot-work tool steel’s AISI H10 powder material was carried out in order to determine suitable parameters for L-PBF processing and heat treatment parameters. Additionally, the mechanical properties of L-PBF-processed AISI H10 specimens were investigated. Furthermore, the influence of different internal cooling channels regarding a possible structural weakening of the die were analysed by means of a finite element method (FEM) applied to a hot-forging process. The numerical results indicated that the developed forging dies withstood the mechanical loads during a forging process. However, during the investigation a large dependency between the resulting stresses and the chosen parameters were observed. By choosing the best combination of parameters, a reduction of the equivalent stress by 1000 MPa can be achieved. Finally, a prototype of the hybrid-forging dies featuring the most promising cooling channel geometry was manufactured.
Diffusion treatments offer possibilities to enhance the performance and the service lifetime of hot forging tools. In combination with coating after nitriding, the surface layer hardness can be further increased. Within the scope of this study, a surface layer hardness above 2,000 HV0.005 was determined for borided or DLC (diamond-like carbon) coated surface layers. An increased surface layer hardness improves the abrasive wear resistance of forging dies. Furthermore, the plastic deformation of thermally softened forging die areas can be reduced. Beside these desirable effects, the ductility of diffusion treated or coated near surface layers is reduced and thermomechanical cracks are promoted. Therefore, additional approaches were developed to improve the thermomechanical crack behaviour of forging dies. Patterned plasmanitriding by the use of coverages to prevent areas from nitrogen diffusion, new combination processes of plasmanitrocarburizing (PNC) followed by plasmanitriding (PN) and the innovative boriding were investigated on different abstraction levels. A system of several testing rigs was set up to enable the abstraction of the thermal shock conditions in different stages. The patterned nitriding, boriding and combination plasma process (PN + PNC) were evaluated in a series of industrial field tests to derive recommendations for suitable tool treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.