Macrolide antibiotics have an outstanding ability to concentrate within host cells, particularly phagocytes. In the study described in this paper five different macrolide antibiotics were compared regarding the uptake and release kinetics in human peripheral blood polymorphonuclear neutrophils (PMNs) and three different cell lines, two phagocytic cell lines (RAW 264.7 and THP-1) and an epithelial cell line (MDCK). Based on the results obtained, the substances tested could be clustered into different groups. Azithromycin constituted the first group, characterized by rapid and nonsaturable uptake into phagocytic cells and a high degree of retention in the preloaded cells. The second group included erythromycin and clarithromycin. These two substances do not exhibit cell specificity; consequently, they are taken up to a similar extent and are released by all cell types studied. Ketolides constituted the last group. Their uptake was saturable in cells of monocytic lineage as well as in nondifferentiated cells of myeloid lineage, and they were rapidly released from all the cell lines studied. However, in PMNs, ketolide uptake was not saturable; and unlike telithromycin, cethromycin rapidly egressed from the loaded cells.
Macrolide antibiotics possess immunomodulatory/anti-inflammatory properties. These properties are considered fundamental for the efficacy of macrolide antibiotics in the treatment of chronic inflammatory diseases like diffuse panbronchiolitis and cystic fibrosis. However, the molecular mechanisms and cellular targets of anti-inflammatory/immunomodulatory macrolide activity are still not fully understood. To describe anti-inflammatory effects of macrolides in more detail and to identify potential biomarkers of their activity, we have investigated the influence of azithromycin and clarithromycin on the inflammatory cascade leading to neutrophil infiltration into lungs after intranasal lipopolysaccharide challenge in mice. Azithromycin and clarithromycin pretreatment reduced total cell and neutrophil numbers in bronchoalveolar lavage fluid and myeloperoxidase concentration in lung tissue. In addition, concentrations of several inflammatory mediators, including CCL2, granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin-1 (IL-1), tumor necrosis factor ␣, and sE-selectin in lung homogenates were decreased after macrolide treatment. Inhibition of cytokine production observed in vivo was also corroborated in vitro in lipopolysaccharide-stimulated monocytes/ macrophages, but not in an epithelial cell line. In summary, results presented in this article confirm that macrolides can suppress neutrophil-dominated pulmonary inflammation and suggest that the effect is mediated through inhibition of GM-CSF and IL-1 production by alveolar macrophages. Besides GM-CSF and IL-1, CCL2 and sE-selectin are also identified as potential biomarkers of macrolide anti-inflammatory activity in the lungs.Macrolide antibiotics (macrolides) are a well established class of antimicrobial agents characterized by the presence of a highly substituted macrocyclic lactone ring. Erythromycin, a natural product isolated from Saccharopolyspora erythraea, was the first macrolide to be introduced to clinical use over 50 years ago. Afterward, several semisynthetic derivatives of erythromycin, like clarithromycin (6-O-methylerythromycin A) and azithromycin (9-deoxy-9a-aza-9a-methyl-
BACKGROUND AND PURPOSEAzithromycin has been reported to modify activation of macrophages towards the M2 phenotype. Here, we have sought to identify the mechanisms underlying this modulatory effect of azithromycin on human monocytes, classically activated in vitro.
EXPERIMENTAL APPROACHHuman blood monocytes were primed with IFN-g for 24 h and activated with LPS for 24 h. Azithromycin, anti-inflammatory and lysosome-affecting agents were added 2 h before IFN-g. Cytokine and chemokine expression was determined by quantitative PCR and protein release by ELISA. Signalling molecules were determined by Western blotting and transcription factor activation quantified with a DNA-binding ELISA kit.
KEY RESULTSAzithromycin (1.5-50 mM) dose-dependently inhibited gene expression and/or release of M1 macrophage markers (CCR7, CXCL 11 and IL-12p70), but enhanced CCL2, without altering TNF-a or IL-6. Azithromycin also enhanced the gene expression and/or release of M2 macrophage markers (IL-10 and CCL18), and the pan-monocyte marker CD163, but inhibited that of CCL22. The Toll-like receptor (TLR) 4 signalling pathway was modulated, down-regulating NF-kB and STAT1 transcription factors. The inhibitory profile of azithromycin differed from that of dexamethasone, the phosphodiesterase-4 inhibitor roflumilast and the p38 kinase inhibitor SB203580 but was similar to that of the lysosomotropic drug chloroquine. Effects of concanamycin and NH4Cl, which also act on lysosomes, differed significantly.
CONCLUSIONS AND IMPLICATIONSAzithromycin modulated classical activation of human monocytes by inhibition of TLR4-mediated signalling and possible effects on lysosomal function, and generated a mediator expression profile that differs from that of monocyte/macrophage phenotypes so far described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.