SUMMARY
The Disrupted In Schizophrenia 1 (DISC1) gene is disrupted by a balanced chromosomal translocation (1; 11) (q42; q14.3) in a Scottish family with a high incidence of major depression, schizophrenia and bipolar disorder. Subsequent studies provided indications that DISC1 plays a role in brain development. Here we demonstrate that suppression of DISC1 expression reduces neural progenitor proliferation, leading to premature cell cycle exit and differentiation. Several lines of evidence suggest that DISC1 mediates this function by regulating GSK3β. First, DISC1 inhibits GSK3β activity through direct physical interaction, which reduces β-catenin phosphorylation and stabilizes β-catenin. Importantly, expression of stabilized β-catenin overrides the impairment of progenitor proliferation caused by DISC1 loss-of-function. Furthermore, GSK3 inhibitors normalize progenitor proliferation and behavioral defects caused by DISC1 loss-of-function. Together, these results implicate DISC1 in GSK3β/β-catenin signaling pathways and provide a framework for understanding how alterations in this pathway may contribute to the etiology of psychiatric disorders.
Background-Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system. While the clinical impact of gray matter pathology in MS brains is unknown, 30-40% of MS patients demonstrate memory impairment. The molecular basis of this memory dysfunction has not yet been investigated in MS patients.
Most small-molecule probes and drugs alter cell circuitry by interacting with 1 or more proteins. A complete understanding of the interacting proteins and their associated protein complexes, whether the compounds are discovered by cell-based phenotypic or targetbased screens, is extremely rare. Such a capability is expected to be highly illuminating-providing strong clues to the mechanisms used by small-molecules to achieve their recognized actions and suggesting potential unrecognized actions. We describe a powerful method combining quantitative proteomics (SILAC) with affinity enrichment to provide unbiased, robust and comprehensive identification of the proteins that bind to small-molecule probes and drugs. The method is scalable and general, requiring little optimization across different compound classes, and has already had a transformative effect on our studies of small-molecule probes. Here, we describe in full detail the application of the method to identify targets of kinase inhibitors and immunophilin binders.SILAC ͉ small molecules ͉ target identification
Background
Hippocampal demyelination, a common feature of postmortem multiple
sclerosis (MS) brains, reduces neuronal gene expression and is a likely
contributor to the memory impairment that is found in greater than 40% of
individuals with (MS). How demyelination alters neuronal gene expression is
unknown.
Methods
To explore if loss of hippocampal myelin alters expression of
neuronal microRNAs (miRNA), we compared miRNA profiles from myelinated and
demyelinated hippocampi from postmortem MS brains and performed validation
studies.
Findings
A network-based interaction analysis depicts a correlation between
increased neuronal miRNAs and decreased neuronal genes identified in our
previous study. The neuronal miRNA miR-124, was increased in demyelinated MS
hippocampi and targets mRNAs encoding 26 neuronal proteins that were
decreased in demyelinated hippocampus, including the ionotrophic glutamate
receptors, AMPA 2 and AMPA3. Hippocampal demyelination in mice also
increased miR-124, reduced expression of AMPA receptors and decreased memory
performance in water maze tests. Remyelination of the mouse hippocampus
reversed these changes.
Conclusion
We establish here that myelin alters neuronal gene expression and
function by modulating the levels of the neuronal miRNA miR-124. Inhibition
of miR-124 in hippocampal neurons may provide a therapeutic approach to
improve memory performance in MS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.