The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.
The Acp2 gene encodes lysosomal acid phosphatase 2 (ACP2), an isoenzyme that hydrolyzes orthophosphoric monoesters to alcohol and phosphate. Mutations in this gene compromise lysosomal function and cause acid phosphatase deficiency. Loss of Acp2 in the brain causes defects in the cerebellum. Here, we performed an in-depth protein expression analysis in the mouse cerebellum to understand how Acp2 controls cellular function in the developing and adult brain. We have found that during development, ACP2 expression marks the caudal midbrain and cerebellum, two regions that are linked by multiple signaling mechanisms during embryogenesis. By around P8, ACP2 was localized predominantly to the somata of Purkinje cells, the principal neurons of the cerebellar cortex. During the second postnatal week, we found that ACP2 expression expanded into the dendrites and axon terminals of Purkinje cells. However, at 2 weeks of age, only a subset of Purkinje cells strongly express ACP2. Further expression analyses revealed that in the mature cerebellum, ACP2 expression divided Purkinje cells into a pattern of molecular zones that are associated with the functional topography of sensory-motor circuitry. These data suggest that ACP2 expression is dynamically regulated during development, and in the adult, it may function within a complex architecture that is linked to cerebellar modular organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.