Although recent animal studies have fuelled growing interest in Ab-independent functions of B cells, relatively little is known about how human B cells and their subsets may contribute to the regulation of immune responses in either health or disease. In this study, we first confirm that effector cytokine production by normal human B cells is context dependent and demonstrate that this involves the reciprocal regulation of proinflammatory and anti-inflammatory cytokines. We further report that this cytokine network is dysregulated in patients with the autoimmune disease multiple sclerosis, whose B cells exhibit a decreased average production of the down-regulatory cytokine IL-10. Treatment with the approved chemotherapeutic agent mitoxantrone reciprocally modulated B cell proinflammatory and anti-inflammatory cytokines, establishing that the B cell cytokine network can be targeted in vivo. Prospective studies of human B cells reconstituting following in vivo depletion suggested that different B cell subsets produced distinct effector cytokines. We confirmed in normal human B cell subsets that IL-10 is produced almost exclusively by naive B cells while the proinflammatory cytokines lymphotoxin and TNF-α are largely produced by memory B cells. These results point to an in vivo switch in the cytokine “program” of human B cells transitioning from the naive pool to the memory pool. We propose a model that ascribes distinct and proactive roles to memory and naive human B cell subsets in the regulation of memory immune responses and in autoimmunity. Our findings are of particular relevance at a time when B cell directed therapies are being applied to clinical trials of several autoimmune diseases.
Background: Treatment with natalizumab, a monoclonal antibody against the adhesion molecule very late activation antigen 4, an ␣4 1 integrin, was recently associated with the development of progressive multifocal leukoencephalopathy, a demyelinating disorder of the central nervous system caused by JC virus infection. Objective: To test the effect of natalizumab treatment on the CD4 ϩ /CD8 ϩ T-cell ratios in cerebrospinal fluid (CSF) and peripheral blood.
To our knowledge, we provide first proof of concept that natalizumab diminishes migratory capacity of immune cells. Our prospective study further shows that effects of therapy likely (1) differ for distinct immune cell subsets, (2) are not sustained over current dose interval, (3) have unique profiles in individual patients, and (4) include modulation of activation threshold of immune cells. Monitoring these parameters could be relevant to ongoing safety and efficacy considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.