Neutrophil extracellular traps (NETs) have an important role during infection by helping neutrophils to capture and kill pathogens. However, evidence is accumulating that uncontrolled or excessive production of NETs is related to the exacerbation of inflammation and the development of autoimmunity, cancer metastasis and inappropriate thrombosis. In this Review, we focus on the role of NETs in the liver and gastrointestinal system, outlining their protective and pathological effects. The latest mechanistic insights in NET formation, interactions between microorganisms and NETs and the relationship between neutrophil subtypes and their functions are also discussed. Additionally, we describe the potential importance of NET-related molecules, including cell-free DNA and hypercitrullinated histones, as biomarkers and targets for therapeutic intervention in gastrointestinal diseases.
While the ontogeny and recruitment of the intestinal monocyte/macrophage lineage has been studied extensively, their precise localization and function has been overlooked. Here we show by imaging the murine small and large intestines in steady-state that intestinal CX3CR1 + macrophages form an interdigitated network intimately adherent to the entire mucosal lamina propria vasculature. The macrophages form contacts with each other, which are disrupted in the absence of microbiome, monocyte recruitment (Ccr2 −/−), or monocyte conversion (Nr4a1 −/−). In dysbiosis, gaps exist between the perivascular macrophages correlating with increased bacterial translocation from the lamina propria into the bloodstream. The recruitment of monocytes and conversion to macrophages during intestinal injury is also dependent upon CCR2, Nr4a1 and the microbiome. These findings demonstrate a relationship between microbiome and the maturation of lamina propria perivascular macrophages into a tight anatomical barrier that might function to prevent bacterial translocation. These cells are also critical for emergency vascular repair.
Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Since conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigen, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad anti-tumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.