Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane; BPA), little is known about the toxicities of the structurally similar compounds, namely bisphenols (BPs). A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and estrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly estrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-estradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak estrogenic activity as well as BPA. Some of the BPs showed considerably higher estrogenic activity than BPA, and others exhibited much lower activity. Among the tested BPs, two compounds, i.e., bisphenol-S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide, have never been reported for their estrogenic activity previously.
Water-insoluble fragmin/protamine microparticles of about 0.5-1 mum in diameter were prepared by simple mixing of low-molecular-weight heparin (fragmin) with protamine. We investigated the capability of these microparticles to immobilize fibroblast growth factor (FGF)-2, to protect FGF-2 against degradation, to enhance FGF-2 activity, and to facilitate controlled release of FGF-2. FGF-2 bound to the fragmin/protamine microparticles with high affinity (Kd = 2.08 x 10(-9) M) and the half-life of FGF-2-activity was prolonged substantially through binding of FGF-2 to the microparticles, by protection of FGF-2 from inactivation by heat and proteolysis. After subcutaneous injection into the back of mice, the fragmin/protamine microparticles underwent biodegradation and disappeared in about 2 weeks. A similar injection of FGF-2-containing microparticles resulted in significant neovascularization and fibrous tissue formation near the injection site after 1 week. These results indicate that controlled release of biologically active FGF-2 occurs through both slow diffusion and biodegradation of the microparticles, with subsequent induction of neovascularization. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2009.
Application of ultraviolet (UV) irradiation to a photocrosslinkable chitosan (Az-CH-LA) aqueous solution resulted within 10 s in an insoluble, flexible hydrogel. A low molecular weight acidic molecule like trypan blue and various high molecular weight molecules such as bovine serum albumin (BSA), heparin and protamine were all retained within the hydrogel, while a low molecular weight basic molecule like toluidine blue was rapidly released from the hydrogel. In the present work, we examined the retaining capability of the chitosan hydrogel for growth factors and controlled release of growth factors from the chitosan hydrogel in vitro and in vivo. Fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor(165) (VEGF(165)), heparin-binding epidermal growth factor (HB-EGF) in phosphate buffered saline (PBS) were mixed with Az-CH-LA aqueous solution to form growth factor-incorporated chitosan hydrogels. About 10-25% of the growth factor was released from a growth factor-incorporated chitosan hydrogel into PBS within the first day, after which no further substantial release took place. The growth factors interacted with Az-CH-LA molecules poly-ion complexation, and probably were unable to be released after the first day under the in vitro nondegradation conditions of the hydrogel. Although the FGF-1, FGF-2, and VEGF(165)-incorporated chitosan hydrogels on a culture plate significantly stimulated HUVEC growth, the stimulating activity of the growth factor-incorporated chitosan hydrogel was completely cancelled out by washing the hydrogel with PBS solution for 3 days or more. The stimulating activity on the HUVEC growth were however highly recovered by treating the washed growth factor-incorporated chitosan hydrogel during 7 days with chitinase and chitosanase to partly degrade the hydrogel, strongly suggesting that the growth factors within the hydrogel retained their biologically active forms. The chitosan hydrogel (100 microl) when implanted into the back of a mouse was biodegraded in about 10-14 days. When FGF-1- and FGF-2-incorporated chitosan hydrogels were subcutaneously implanted into the back of a mouse, significant neovascularization was induced near the implanted site of the FGF-1- and FGF-2-incorporated chitosan hydrogels. Furthermore, addition of heparin with either FGF-1 or FGF-2 into the hydrogel resulted in a significantly enhanced and prolonged vascularization effect. These results indicate that the controlled release of biologically active FGF-1 and FGF-2 with heparin is caused by biodegradation of the chitosan hydrogel, and subsequent induction of vascularization.
Silver is easily available and is known to have microbicidal effect; moreover, it does not impose any adverse effects on the human body. The microbicidal effect is mainly due to silver ions, which have a wide antibacterial spectrum. Furthermore, the development of multidrug-resistant bacteria, as in the case of antibiotics, is less likely. Silver ions bind to halide ions, such as chloride, and precipitate; therefore, when used directly, their microbicidal activity is shortened. To overcome this issue, silver nanoparticles (Ag NPs) have been recently synthesized and frequently used as microbicidal agents that release silver ions from particle surface. Depending on the specific surface area of the nanoparticles, silver ions are released with high efficiency. In addition to their bactericidal activity, small Ag NPs (<10 nm in diameter) affect viruses although the microbicidal effect of silver mass is weak. Because of their characteristics, Ag NPs are useful countermeasures against infectious diseases, which constitute a major issue in the medical field. Thus, medical tools coated with Ag NPs are being developed. This review outlines the synthesis and utilization of Ag NPs in the medical field, focusing on environment-friendly synthesis and the suppression of infections in healthcare workers (HCWs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.