The objectives of this study were to elucidate the normal anatomy of middle cerebral artery (MCA) bifurcations and to analyze the differences in patients with MCA aneurysms. In the present study, 62 patients underwent three-dimensional magnetic resonance angiography, and no intracranial lesions were noted. The widths of M1 and the superior and inferior M2 branches, as well as their respective lateral angles, were measured. These values were used to calculate the daughter artery ratio (DA ratio; width of larger M2/width of smaller M2) and the lateral angle ratio (LA ratio; lateral angle between M1 and larger M2/lateral angle between M1 and smaller M2). The DA and LA ratios of 54 MCA aneurysm patients (34 with ruptured aneurysms, 20 with unruptured aneurysms) were also calculated, using three-dimensional digital subtraction angiography, and compared with the normal values. In normal patients, the widths of M1 and the branches of M2, the lateral angles, and the LA and DA ratios were not significantly different between the right and left sides. The bilateral superior and inferior lateral angles of normal MCAs were significantly wider than those of MCAs with aneurysms. The DA ratio was 1.5 ± 0.4 in normal MCAs and 1.7 ± 0.7 in MCAs with aneurysms; this difference was significant (p < 0.05). The LA ratio was 1.3 ± 0.4 in normal MCAs and 2.1 ± 1.4 in MCAs with aneurysms; these values were also significantly different (p < 0.01). Normal cerebral artery bifurcations show close to symmetric structure in the M2 branches and the lateral angles, whereas aneurysmal MCAs do not show this symmetry.
Cell-based therapy using mesenchymal stem cells (MSCs) is a novel treatment strategy for spinal cord injury (SCI). MSCs can be isolated from various tissues, and their characteristics vary based on the source. However, reports demonstrating the effect of transplanted rat cranial bone-derived MSCs (rcMSCs) on rat SCI models are lacking. In this study, we determined the effect of transplanting rcMSCs in rat SCI models. MSCs were established from collected bone marrow and cranial bones. SCI rats were established using the weight-drop method and transplanted intravenously with MSCs at 24 h post SCI. The recovery of motor function and hindlimb electrophysiology was evaluated 4 weeks post transplantation. Electrophysiological recovery was evaluated by recording the transcranial electrical stimulation motor-evoked potentials. Tissue repair after SCI was assessed by calculating the cavity ratio. The expression of genes involved in the inflammatory response and cell death in the spinal cord tissue was assessed by real-time polymerase chain reaction. The transplantation of rcMSCs improved motor function and electrophysiology recovery, and reduced cavity ratio. The expression of proinflammatory cytokines was suppressed in the spinal cord tissues of the rats that received rcMSCs. These results demonstrate the efficacy of rcMSCs as cell-based therapy for SCI.
Chronic subdural hematomas (CSDHs) occur often in elderly persons and can occur with mild head trauma. With burr-hole irrigation as standard treatment, symptoms usually improve and can be cured, and outcomes are good, but postoperative recurrences are a common problem. This study investigated the effectiveness and recurrence rates when using artificial cerebrospinal fluid (ACF) instead of normal saline (NS) as an irrigation solution for burr-hole irrigation in patients with CSDH. This prospective study included 234 consecutive patients who underwent initial surgical treatment by burr-hole irrigation for a CSDH between April 2008 and June 2015. The irrigation solution used was changed from NS to ACF in June 2011. Factors examined with regard to recurrence included age, sex, unilateral or bilateral surgery, computed tomography (CT) findings, antiplatelet or anticoagulant drug use, past history, and irrigation solution (NS or ACF). These were analyzed by univariate and multivariate analyses. Univariate analyses (chi-square test) with a significance level <5% showed that recurrence rates were significantly lower in the ACF group than in the NS group (P = 0.003). Multivariate analysis (multiple logistic regression analysis) showed that the risk of recurrence was reduced 3.14-fold in the ACF group compared to the NS group (odds ratio, 3.143; 95% confidence interval, 0.1504–0.6733; P = 0.0028). None of the other factors were significantly different. In burr-hole irrigation for CSDH, the use of ACF instead of NS as an irrigation solution significantly reduces recurrence rates.
This study aimed to determine the prevalence and risk factors for brain white matter changes in normal young and middle-aged participants who underwent Brain Dock (brain screening). We analyzed 5,000 consecutive healthy participants from the Brain Dock registry between August to December 2018. Age, sex, body mass index (BMI), medical history, deep subcortical white matter high intensity (DSWMH), periventricular high intensity (PVH), and enlargement of perivascular space (EPVS) were investigated in relation to age. The prevalence of DSWMH, PVH, and EPVS were 35.3%, 14.0%, and 17.8%, respectively. Multivariate logistic regression analyses for brain white matter changes were conducted. The significant risk factors in participants aged < 50 years were: age (OR:1.09, 95% CI:1.07-1.12), the female sex (1.29, 1.03-1.60), BMI obesity (1.86, 1.12-3.08), and hypertension (1.67, 1.18-2.35) for DSWMH; age (1.08, 1.04-1.13) and the female sex (1.56, 1.03-2.36) for PVH; and age (1.07, 1.05–1.10) and the female sex (0.77, 0.60-1.00) for EPVS. In conclusion, age was consistently identified as a significant risk factor in young and middle-aged participants. Some risk factors for brain white matter changes were identified even in young and middle-aged participants in this study. Further longitudinal studies should be done in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.