The Quake That Rocked Japan
The 11 March 2011 magnitude 9.0 Tohoku-Oki megathrust earthquake just off the Eastern coast of Japan was one of the largest earthquakes in recorded history. Japan's considerable investment in seismic and geodetic networks allowed for the collection of rapid and reliable data on the mechanics of the earthquake and the devastating tsunami that followed (see the Perspective by
Heki
).
Sato
et al.
(p.
1395
, published online 19 May) describe the huge displacements from ocean bottom transponders—previously placed directly above the earthquake's hypocenter—communicating with Global Positioning System (GPS) receivers aboard a ship.
Simons
et al.
(p.
1421
, published online 19 May) used land-based GPS receivers and tsunami gauge measurements to model the kinematics and extent of the earthquake, comparing it to past earthquakes in Japan and elsewhere. Finally,
Ide
et al.
(p.
1426
, published online 19 May) used finite-source imaging to model the evolution of the earthquake's rupture that revealed a strong depth dependence in both slip and seismic energy. These initial results provide fundamental insights into the behavior of rare, very large earthquakes that may aid in preparation and early warning efforts for future tsunamis following subduction zone earthquakes.
Inhibiting spontaneous light emission and redistributing the energy into useful forms are desirable objectives for advances in various fields, including photonics, illuminations, displays, solar cells, and even quantum-information systems. We demonstrate both the "inhibition" and "redistribution" of spontaneous light emission by using two-dimensional (2D) photonic crystals, in which the refractive index is changed two-dimensionally. The overall spontaneous emission rate is found to be reduced by a factor of 5 as a result of the 2D photonic bandgap effect. Simultaneously, the light energy is redistributed from the 2D plane to the direction normal to the photonic crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.