New innovative Industrialised Building System (IBS) has been implemented in Malaysia. It is a sustainable approach, innovative technique and implements repetitive manufacturing using green materials. This paper presents one of the standard tests to check the design and strength of IBS components via an experimental flexural test and then verify the finite element analysis. One IBS frame was set-up, tested with two points of monotonic vertical loading, and analysed by Abaqus 6.12 software. The structural performance in nonlinear state was evaluated in loaddisplacement relationship of beam, crack pattern, mode of failure, and stresses at concrete and connection deformation to guide the further components inspection.
The main objective of this study was to obtain the correlation between the severity of damage to the stiffness of the frame in the format of its intrinsic dynamic properties, the natural frequency of the structural system at damaged and undamaged state. In this research, a laboratory test was performed on the precast post-tension frame of a similar dimension and strength specification to Jabatan Kerja Raya (JKR) school buildings. The modal frame is a reduced in scale of 1 to 5 and subjected to cyclic lateral loadings and monitored its frequency through vibration test. The vibration test was performed at each end of the cycle of a lateral pushover test. The vibration data was recorded by accelerometers due to external forced vibration to assess its natural frequency, mode shapes and damping values of the system. This research found that there is a physical tangible relationship between natural frequency changes and stiffness in the frame. The results showed that as the severity of damage increases, the natural frequency of the frame decreases significantly, indicating that softening of the system that lead to a favorable ductility for earthquakes.
The new construction method known as Industrialized Building System (IBS) offers several benefits compared to the Conventional Building System (CBS); however, IBS is perceived by most of the practitioners to be an expensive method for being utilized in construction industry. Whilst relatively numerous studies have been carried out on the subject of IBS and CBS methods, there has not been any exploiting building information modeling (BIM) as a useful tool to calculate quantities, time, and cost needed to construct building with each of the two aforementioned methods. The aim of this paper is to calculate cost of two similar buildings (one is constructed with IBS method and other one with CBS method) and compare them in terms of economy based on a chosen case study and same initial investment. To this end, the construction cost of buildings is calculated using BIM software, namely Revit Architecture and Navisworks Manage for modeling the chosen case study and estimating construction cost, respectively. The findings indicated that IBS was not economic in low investment of company; however, with investment on more than 100 units of IBS, this method was shown more economical compared to CBS method. In addition, the initial investment on IBS method could be returned when more than 200 units of IBS were implemented in the projects.
<p class="0abstract">Thermal comfort is the human subject perceived satisfaction to the environmental condition. The human comfort level is affected by skin temperature. Currently to determine the human skin temperature by using human experiment in a controlled environment. However, the experiment is very rigorous and exhaustive. This study was conducted to predict human skin temperature under comfort level with using the finite element method and the bioheat equation. The bioheat equation is used to predict the initial value of human skin temperature with the influence of the metabolic heat generation and the blood perfusion. It is discovered the skin temperature of the human subject experiment fluctuates. However, the result obtained from the model remains unchanged until the simulation ends. The predicted results from the model were well in agreement with the experimental results with an acceptable error of 1.05%.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.