A combination of singular spectrum analysis and locally linear neurofuzzy modeling technique is proposed to make accurate long-term prediction of natural phenomena. The principal components (PCs) obtained from spectral analysis have narrow band frequency spectra and definite linear or nonlinear trends and periodic patterns; hence they are predictable in large prediction horizon. The incremental learning algorithm initiates a model for each of the components as an optimal linear least squares estimation, and adds the nonlinear neurons if they help to reduce error indices over training and validation sets. Therefore, the algorithm automatically constructs the best linear or nonlinear model for each of the PCs to achieve maximum generalization, and the long-term prediction of the original time series is obtained by recombining the predicted components. The proposed method has been primarily tested in long-term prediction of some wellknown nonlinear time series obtained from MackeyGlass, Lorenz, and Ikeda map chaotic systems, and the results have been compared to the predictions made by multi-layered perceptron (MLP) and radial basis functions (RBF) networks. As a real world case study, the method has been applied to the long-term prediction of solar activity where the results have been compared to the long-term predictions of physical precursor and solar dynamo methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.