Understanding the correlations between magnetic nanoparticles is important for nanotechnologies, such as high-density magnetic recording and biomedical applications, where functionalized magnetic particles are used as contrast agents and for drug delivery. The ability to control the magnetic state of individual particles depends on the good knowledge of the magnetic correlations between particles when assembled. Inaccessible via standard magnetometry techniques, nanoscale magnetic ordering in self-assemblies of Fe 3 O 4 nanoparticles is here unveiled via X-ray resonant magnetic scattering (XRMS). Measured throughout the magnetization process, the XRMS signal reveals size-dependent inter-particle magnetic correlations. Smaller (5 nm) particles show little magnetic correlations, even when packed close together, yielding to magnetic disorder in the absence of an external field, i.e., superparamagnetism. In contrast, larger (11 nm) particles tend to be more strongly correlated, yielding a mix of magnetic orders including ferromagnetic and anti-ferromagnetic orders. These magnetic correlations are present even when the particles are sparsely distributed.
The orbital and spin contributions to the magnetic moment of Fe in Fe3O4 nanoparticles were measured using X-ray magnetic circular dichroism (XMCD). Nanoparticles of different sizes, ranging from 5 to 11 nm, were fabricated via organic methods and their magnetic behavior was characterized by vibrating sample magnetometry (VSM). An XMCD signal was measured for three different samples at 300 K and 80 K. The extracted values for the orbital and spin contributions to the magnetic moment showed a quenching of the orbital moment and a large spin moment. The calculated spin moments appear somewhat reduced compared to the value expected for bulk Fe3O4. The spin moments measured at 80 K are larger than at 300 K for all the samples, revealing significant thermal fluctuations effects in the nanoparticle assemblies. The measured spin moment is reduced for the smallest nanoparticles, suggesting that the magnetic properties of Fe3O4 nanoparticles could be altered when their size reaches a few nanometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.